The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports syst...The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.展开更多
This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop acro...This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.展开更多
The mechanical integrity and reliability of coated devices are strongly affected by the residual stresses in thin films and coatings. However, due to the metallurgical complexity of materials, it is rather difficult t...The mechanical integrity and reliability of coated devices are strongly affected by the residual stresses in thin films and coatings. However, due to the metallurgical complexity of materials, it is rather difficult to obtain a closed-form solution of residual stresses within multilayered coatings (e.g. functionally graded coatings, FGCs). In this paper,an analytical model is developed to predict the distribution of residual stresses within multilayered coatings. The advantage of this model is that the solution of residual stresses is independent of the number of layers. Specific results are obtained by calculating elastic thermal stresses in ZrO2/NiCoCrAIY FGCs, which consist of different material layers. Furthermore, the residual stress distribution near the edges and the stress-induced failure modes of coating are also analyzed. The topics discussed provide some insights into the development of a methodology for designing fail-safe coating systems.展开更多
For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that c...For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that co-electrodeposition in a bath with stirring rate of250r/min results in the maximum co-electrodeposited particle content and the best particle distribution.To produce NCZ graded Ni-NCZ composite coating,the stirring rate was continuously increased from0to250r/min.The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate towards the surface.The results showed that with increasing the co-electrodeposited NCZ particles content in Ni matrix,microhardness increases from interface towards the surface of the coating.Little crystallite size of Ni matrix and higher co-electrodeposited hard particles content were recognized as the reasons of microhardness increasing.Bend test revealed that the functionally graded composite coating shows more excellent adhesion to the substrate compared with the ordinary distributed Ni-NCZ on the same substrate.This result is attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.The results of wear resistance measurements reveal that wear resistance of functionally graded Ni-NCZ is higher than that of ordinary distributed composite coating.展开更多
This investigation evaluates, by the dislocation method, the dynamic stress intensity factors of cracked orthotropic half-plane and functionally graded material coating of a coating- substrate material due to the acti...This investigation evaluates, by the dislocation method, the dynamic stress intensity factors of cracked orthotropic half-plane and functionally graded material coating of a coating- substrate material due to the action of anti-plane traction on the crack surfaces. First, by using the complex Fourier transform, the dislocation problem can be solved and the stress fields are obtained with Cauchy singularity at the location of dislocation. The dislocation solution is utilized to derive integral equations for multiple interacting cracks in the orthotropic half-plane with functionally graded orthotropic coating. Several examples are solved and dynamic stress intensity factors are obtained.展开更多
文摘The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM.
基金The National Natural Science Foundation of China(No.10962008,51061015)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.
基金the priority support provided by the National Natural Science Foundation of China(No.50235030)the National Development Scheme of Kev Fundamental Research(National“973”Proiect)of China(No.G1999065009)“863”Project(No.2003AA331130).
文摘The mechanical integrity and reliability of coated devices are strongly affected by the residual stresses in thin films and coatings. However, due to the metallurgical complexity of materials, it is rather difficult to obtain a closed-form solution of residual stresses within multilayered coatings (e.g. functionally graded coatings, FGCs). In this paper,an analytical model is developed to predict the distribution of residual stresses within multilayered coatings. The advantage of this model is that the solution of residual stresses is independent of the number of layers. Specific results are obtained by calculating elastic thermal stresses in ZrO2/NiCoCrAIY FGCs, which consist of different material layers. Furthermore, the residual stress distribution near the edges and the stress-induced failure modes of coating are also analyzed. The topics discussed provide some insights into the development of a methodology for designing fail-safe coating systems.
文摘For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that co-electrodeposition in a bath with stirring rate of250r/min results in the maximum co-electrodeposited particle content and the best particle distribution.To produce NCZ graded Ni-NCZ composite coating,the stirring rate was continuously increased from0to250r/min.The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate towards the surface.The results showed that with increasing the co-electrodeposited NCZ particles content in Ni matrix,microhardness increases from interface towards the surface of the coating.Little crystallite size of Ni matrix and higher co-electrodeposited hard particles content were recognized as the reasons of microhardness increasing.Bend test revealed that the functionally graded composite coating shows more excellent adhesion to the substrate compared with the ordinary distributed Ni-NCZ on the same substrate.This result is attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.The results of wear resistance measurements reveal that wear resistance of functionally graded Ni-NCZ is higher than that of ordinary distributed composite coating.
文摘This investigation evaluates, by the dislocation method, the dynamic stress intensity factors of cracked orthotropic half-plane and functionally graded material coating of a coating- substrate material due to the action of anti-plane traction on the crack surfaces. First, by using the complex Fourier transform, the dislocation problem can be solved and the stress fields are obtained with Cauchy singularity at the location of dislocation. The dislocation solution is utilized to derive integral equations for multiple interacting cracks in the orthotropic half-plane with functionally graded orthotropic coating. Several examples are solved and dynamic stress intensity factors are obtained.