In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament...In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.展开更多
Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with inte...Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with interpolation points mutual iterative between odd and even sequences in boundary region is provided, as well as the conformal mapping function which can be described by real number region between complicated region and unit dish region is carried out. Furthermore, in the in-plane state of constant stress, vibrating function is completed by unit dish region method for simple-supported elastic plates with concentrated substance of complicated vibrating region, and the coefficient of fundamental frequency of the plate is analyzed. Meanwhile, taking simple-supported elastic ellipse-plates as an example, the effects on fundamental frequency caused by eccentric ratio, the coefficient of constant in-plane stress, as well as the concentrated substance mass and positions are analyzed respectively.展开更多
In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequ...In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.展开更多
By conformal mapping theory, a trigonometric interpolation method between odd and even sequences in rectangle boundary region was provided, and the conformal mapping function of rectangle-plate with arc radius between...By conformal mapping theory, a trigonometric interpolation method between odd and even sequences in rectangle boundary region was provided, and the conformal mapping function of rectangle-plate with arc radius between complicated region and unite dish region was carried out. Aiming at calculating the vibrating fundamental frequency of special-shaped, elastic simple-supported rectangle-plates, in the in-plane state of constant stress, the vibration function of this complicated plate was depicted by unit dish region. The coefficient of ftmdamental frequency was calculated. Whilst, taking simple-supported elastic rectangle-plates with arc radius as an example, the effects on fundamental frequency caused by the concentrated mass and position, the ratio of the length to width of rectangle, as well as the coefficient of constant in-plane stress were analyzed respectively.展开更多
The sufficient estimation of the natural period of vibration constitutes an essential step in earthquake design and assessment and its role in the development of seismic damage is investigated in the current research....The sufficient estimation of the natural period of vibration constitutes an essential step in earthquake design and assessment and its role in the development of seismic damage is investigated in the current research. The fundamental period is estimated for typical reinforced concrete building types, representative of the building stock of Southern Europe, according to existing relationships. The building typologies also represent groups of 180,945 existing damaged buildings of an observational database created after the Athens (7-9-1999) near field earthquake. The estimated fundamental periods are correlated to several degrees of the recorded damage. Important conclusions are drawn on the parameters (height, structural type, etc.) that influence the seismic response and the development of damage based on the wide database. After conducting a correlation analysis, noticeable is the difference between the seismic demand of the elastic spectrum of the first (1959), the contemporary (2003) Greek Seismic Code and the values of peak ground accelerations of several Athens earthquake records. Moreover, PGAs in most records are often between the lower and the upper bound of the estimated fundamental periods for RC buildings with regular infills (n-normal) and with ground levels without infill panels (p-pilotis) regardless the height. A disparity is noticed when the estimated fundamental period is based on EC8 provisions for the considered as “high” buildings in S. Europe regarding the referring earthquake. The majority of buildings that developed several degree, type and extent of damage are considered of “low” height with estimated fundamental periods close to the PGA values of Athens earthquake ground motions. However, the developed damage was the result of the combination of parameters based on geological, tectonic and morphological characteristics of the affected area. In addition, a damage scale for the measurable recording, beyond the qualitative characterization of seismic damage in Greek post-earthquake surveys, is presented wherein the performance levels are defined according to the physical description of the seismic damage and, as well, in terms of structural and economic damage index.展开更多
In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electric...In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electrical interactions between charged microparticles (MPs), which develop as fundamental vibrations (FVs) in ether, producing the vibrational strains εand γand the resulting stresses σand τ, as percussions of ether cells (ECs) upon the MP surface. The stresses σ?and?τproduce a resultant force FP, due to the percussions which constitute the real electric force FCC. The spatial effect of ether on FP is demonstrated by an analytical method, considering the electrical interaction between MPs through various equidistant spatial paths li of FVs, modelled on the basis of the Huygens principle for waves. For this issue, we utilized a numerical calculation, which could be generalized. But this spatial effect of the ether leads at a very slow decreasing of the FP forces ratio rF when doubling the distance l, in contrast to Coulomb’s FC forces whose ratio rF?decreases accentuate with doubling l. Accordingly, the necessity of including the term ln r in the FCC force, which is limited to 1.0 for doubling l, at long distances, was justified.展开更多
The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the sur...The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.展开更多
Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the mod...Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the modalities of interaction between two SMPs, based on periodic mechanical percussion forces, produced by fundamental vibrations FVs. A mechanism for describing the interaction between a SMPs and the ETH is presented. Positive and negative particles are defined by their membrane types of movement, such as +, <span style="white-space:nowrap;">−</span><em>u</em>/+, <span style="white-space:nowrap;">−</span><em>v</em> vibrations, and rotations at speeds +<span style="white-space:nowrap;">Ω</span>/<span style="white-space:nowrap;">−</span><span style="white-space:nowrap;">Ω</span>. The process of creating a pair of SMPs is discussed. Applying HFVI to the interaction between pairs of SMPs immobile in ETH, and considering longitudinal FVL, was obtained the forces of attraction/repulsion +<em>F</em><sub><em>L</em>21</sub>/–<em>F<sub>L</sub></em><sub>21</sub>, which correspond to the completed Coulomb force<em> F<sub>CC</sub></em> including gravitation. The resultant <em>F</em><sub>RL21</sub> will form an oriented field of forces, which is a quasielectric field <em>QE</em>, equivalent to actual <em>E</em> electric field. Considering transversal FVT, was obtained the vibratory forces +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>21</sub>, whose resultant forms an vibrating field of forces, <em>QHs</em>, a quasimagnetic special field, which may explain some of the quantum properties of SMPs. Considering a mobile SMP, two new<em> <span style="white-space:nowrap;">γ</span></em> strains in ETH appear. Strains <em><span style="white-space:nowrap;">γ</span><sub>L</sub></em> are created by the displacement of SMP with velocity<em> V</em>, whose force +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>12</sub> is the support of a component of the magnetic field <em>H</em> (quasimagnetic field <em>QH</em>), giving the <em>QH<sub>L</sub></em> component. Strains <em>γ</em><sub>R</sub> are created by the rotation of SMP with speed <span style="white-space:nowrap;">Ω</span>, whose force +, <span style="white-space:nowrap;">−</span><em>F</em><sub>R12</sub> constitutes physical support of the component <em>QH<sub>R</sub></em> of magnetic field <em>H </em>(<em>i.e. QH)</em><em></em>. The creation of a photon PH is modelled as a special ESMP containing two zones of opposed rotations, and a mechanism is presented for its movement in the ETH with speed <em>c</em> based on the HS hypothesis of screwing in ETH, with frequency <em>ν</em>.展开更多
基金Projects (U1334201,51525804) supported by the National Natural Science Foundation of ChinaProject (15CXTD0005) supported by the Sichuan Province Youth Science and Technology Innovation Team,China
文摘In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.
文摘Aimed at calculating the fundamental frequency of vibration of special-shaped, simple-supported elastic plates, Conformal Mapping theory is applied, and the mathematical method of trigonometric interpolation with interpolation points mutual iterative between odd and even sequences in boundary region is provided, as well as the conformal mapping function which can be described by real number region between complicated region and unit dish region is carried out. Furthermore, in the in-plane state of constant stress, vibrating function is completed by unit dish region method for simple-supported elastic plates with concentrated substance of complicated vibrating region, and the coefficient of fundamental frequency of the plate is analyzed. Meanwhile, taking simple-supported elastic ellipse-plates as an example, the effects on fundamental frequency caused by eccentric ratio, the coefficient of constant in-plane stress, as well as the concentrated substance mass and positions are analyzed respectively.
文摘In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.
文摘By conformal mapping theory, a trigonometric interpolation method between odd and even sequences in rectangle boundary region was provided, and the conformal mapping function of rectangle-plate with arc radius between complicated region and unite dish region was carried out. Aiming at calculating the vibrating fundamental frequency of special-shaped, elastic simple-supported rectangle-plates, in the in-plane state of constant stress, the vibration function of this complicated plate was depicted by unit dish region. The coefficient of ftmdamental frequency was calculated. Whilst, taking simple-supported elastic rectangle-plates with arc radius as an example, the effects on fundamental frequency caused by the concentrated mass and position, the ratio of the length to width of rectangle, as well as the coefficient of constant in-plane stress were analyzed respectively.
文摘The sufficient estimation of the natural period of vibration constitutes an essential step in earthquake design and assessment and its role in the development of seismic damage is investigated in the current research. The fundamental period is estimated for typical reinforced concrete building types, representative of the building stock of Southern Europe, according to existing relationships. The building typologies also represent groups of 180,945 existing damaged buildings of an observational database created after the Athens (7-9-1999) near field earthquake. The estimated fundamental periods are correlated to several degrees of the recorded damage. Important conclusions are drawn on the parameters (height, structural type, etc.) that influence the seismic response and the development of damage based on the wide database. After conducting a correlation analysis, noticeable is the difference between the seismic demand of the elastic spectrum of the first (1959), the contemporary (2003) Greek Seismic Code and the values of peak ground accelerations of several Athens earthquake records. Moreover, PGAs in most records are often between the lower and the upper bound of the estimated fundamental periods for RC buildings with regular infills (n-normal) and with ground levels without infill panels (p-pilotis) regardless the height. A disparity is noticed when the estimated fundamental period is based on EC8 provisions for the considered as “high” buildings in S. Europe regarding the referring earthquake. The majority of buildings that developed several degree, type and extent of damage are considered of “low” height with estimated fundamental periods close to the PGA values of Athens earthquake ground motions. However, the developed damage was the result of the combination of parameters based on geological, tectonic and morphological characteristics of the affected area. In addition, a damage scale for the measurable recording, beyond the qualitative characterization of seismic damage in Greek post-earthquake surveys, is presented wherein the performance levels are defined according to the physical description of the seismic damage and, as well, in terms of structural and economic damage index.
文摘In this study, we demonstrate the correctness of our 2010 hypothesis regarding the need to complete Coulomb’s FC law with the term lnr, resulting in the completed FCC force. For this purpose, we consider the electrical interactions between charged microparticles (MPs), which develop as fundamental vibrations (FVs) in ether, producing the vibrational strains εand γand the resulting stresses σand τ, as percussions of ether cells (ECs) upon the MP surface. The stresses σ?and?τproduce a resultant force FP, due to the percussions which constitute the real electric force FCC. The spatial effect of ether on FP is demonstrated by an analytical method, considering the electrical interaction between MPs through various equidistant spatial paths li of FVs, modelled on the basis of the Huygens principle for waves. For this issue, we utilized a numerical calculation, which could be generalized. But this spatial effect of the ether leads at a very slow decreasing of the FP forces ratio rF when doubling the distance l, in contrast to Coulomb’s FC forces whose ratio rF?decreases accentuate with doubling l. Accordingly, the necessity of including the term ln r in the FCC force, which is limited to 1.0 for doubling l, at long distances, was justified.
文摘The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.
文摘Article continues and complements our previous articles on the HM16 ether (ETH) model. Here, we describe the mechanism of occurrence of the submicroparticle (SMP). A general hypothesis, HFVI, is introduced for the modalities of interaction between two SMPs, based on periodic mechanical percussion forces, produced by fundamental vibrations FVs. A mechanism for describing the interaction between a SMPs and the ETH is presented. Positive and negative particles are defined by their membrane types of movement, such as +, <span style="white-space:nowrap;">−</span><em>u</em>/+, <span style="white-space:nowrap;">−</span><em>v</em> vibrations, and rotations at speeds +<span style="white-space:nowrap;">Ω</span>/<span style="white-space:nowrap;">−</span><span style="white-space:nowrap;">Ω</span>. The process of creating a pair of SMPs is discussed. Applying HFVI to the interaction between pairs of SMPs immobile in ETH, and considering longitudinal FVL, was obtained the forces of attraction/repulsion +<em>F</em><sub><em>L</em>21</sub>/–<em>F<sub>L</sub></em><sub>21</sub>, which correspond to the completed Coulomb force<em> F<sub>CC</sub></em> including gravitation. The resultant <em>F</em><sub>RL21</sub> will form an oriented field of forces, which is a quasielectric field <em>QE</em>, equivalent to actual <em>E</em> electric field. Considering transversal FVT, was obtained the vibratory forces +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>21</sub>, whose resultant forms an vibrating field of forces, <em>QHs</em>, a quasimagnetic special field, which may explain some of the quantum properties of SMPs. Considering a mobile SMP, two new<em> <span style="white-space:nowrap;">γ</span></em> strains in ETH appear. Strains <em><span style="white-space:nowrap;">γ</span><sub>L</sub></em> are created by the displacement of SMP with velocity<em> V</em>, whose force +, <span style="white-space:nowrap;">−</span><em>F<sub>T</sub></em><sub>12</sub> is the support of a component of the magnetic field <em>H</em> (quasimagnetic field <em>QH</em>), giving the <em>QH<sub>L</sub></em> component. Strains <em>γ</em><sub>R</sub> are created by the rotation of SMP with speed <span style="white-space:nowrap;">Ω</span>, whose force +, <span style="white-space:nowrap;">−</span><em>F</em><sub>R12</sub> constitutes physical support of the component <em>QH<sub>R</sub></em> of magnetic field <em>H </em>(<em>i.e. QH)</em><em></em>. The creation of a photon PH is modelled as a special ESMP containing two zones of opposed rotations, and a mechanism is presented for its movement in the ETH with speed <em>c</em> based on the HS hypothesis of screwing in ETH, with frequency <em>ν</em>.