If L is a star body in Rn whose central(n-i)-slices have the same(n-i)-dimensional measure μn-1(with appropriate density) as the central(n-i)-slices of an origin-symmetric star body K, then the corresponding ...If L is a star body in Rn whose central(n-i)-slices have the same(n-i)-dimensional measure μn-1(with appropriate density) as the central(n-i)-slices of an origin-symmetric star body K, then the corresponding n-dimensional measures μn of K and L satisfy μn(K)≤μn(L). This extends a generalized Funk's section theorem for volumes to that for measures.展开更多
The Funk's section theorem in the n-complex space Cn is investigated. It turns out that this theorem does not admit an extension for the class of general origin-symmetric star bodies in Cn but for a class of star bod...The Funk's section theorem in the n-complex space Cn is investigated. It turns out that this theorem does not admit an extension for the class of general origin-symmetric star bodies in Cn but for a class of star bodies called generalized complex intersection bodies. A quasi-version of Funk's section theorem in Cn is established then.展开更多
基金Supported by the National Natural Science Foundation of China(10801140)Chongqing Research Program of Basic Research and Frontier Technology(2013-JCYJ-A00005)the Foundation of Chongqing Normal University(13XLZ05)
文摘If L is a star body in Rn whose central(n-i)-slices have the same(n-i)-dimensional measure μn-1(with appropriate density) as the central(n-i)-slices of an origin-symmetric star body K, then the corresponding n-dimensional measures μn of K and L satisfy μn(K)≤μn(L). This extends a generalized Funk's section theorem for volumes to that for measures.
文摘The Funk's section theorem in the n-complex space Cn is investigated. It turns out that this theorem does not admit an extension for the class of general origin-symmetric star bodies in Cn but for a class of star bodies called generalized complex intersection bodies. A quasi-version of Funk's section theorem in Cn is established then.