A kind of leaching residue generated during high pressure acid leaching of laterite nickel ore is creatively prepared as blast furnace charge for ironmaking.Results show that the briquettes with uniform shape,compress...A kind of leaching residue generated during high pressure acid leaching of laterite nickel ore is creatively prepared as blast furnace charge for ironmaking.Results show that the briquettes with uniform shape,compressive strength higher than 72.3 N/pellet,and cracking temperature over 400℃can be obtained by the non-binder briquetting with water content of 12.2 wt.%and pressure of 30 MPa.After preheating at 975℃for 12 min and roasting at 1225℃for 15 min,the strength of the roasted briquettes can reach 2815 N/pellet,and the iron grade is 59.27 wt.%.And the sulfur content can be simultaneously reduced to 0.067 wt.%.The obtained briquettes achieve adequate reducibility index,reduction degradation index,reduction swelling index,softening and melting temperatures,which are suitable for blast furnace ironmaking.The results show that this method cannot only effectively treat the leaching residue to reduce the risk of environmental pollution,but also realize the utilization of leaching residue.展开更多
A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajector...A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajectory obtained by the model were compared with the industrial charging measurements to validate the applicability of the model. The flow behavior of particles from the weighing hopper to the top layer of a blast furnace and the heaping behavior were analyzed using this model. A radial segregation index (RSI) was used to evaluate the extent of the size segregation in the charging process. In addition, the influence of the chute inclination angle on the size segregation and burden profile during the charging process was investigated.展开更多
基金supported by the National Natural Science Foundation of China(51974371)the National Key R&D Program(No.2018YFC1900605)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University(CSUZC202031).
文摘A kind of leaching residue generated during high pressure acid leaching of laterite nickel ore is creatively prepared as blast furnace charge for ironmaking.Results show that the briquettes with uniform shape,compressive strength higher than 72.3 N/pellet,and cracking temperature over 400℃can be obtained by the non-binder briquetting with water content of 12.2 wt.%and pressure of 30 MPa.After preheating at 975℃for 12 min and roasting at 1225℃for 15 min,the strength of the roasted briquettes can reach 2815 N/pellet,and the iron grade is 59.27 wt.%.And the sulfur content can be simultaneously reduced to 0.067 wt.%.The obtained briquettes achieve adequate reducibility index,reduction degradation index,reduction swelling index,softening and melting temperatures,which are suitable for blast furnace ironmaking.The results show that this method cannot only effectively treat the leaching residue to reduce the risk of environmental pollution,but also realize the utilization of leaching residue.
基金the National Key Technology R&D Program in the 12th Five Year Plan of China(No.2011BAC01B02)for the financial support
文摘A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajectory obtained by the model were compared with the industrial charging measurements to validate the applicability of the model. The flow behavior of particles from the weighing hopper to the top layer of a blast furnace and the heaping behavior were analyzed using this model. A radial segregation index (RSI) was used to evaluate the extent of the size segregation in the charging process. In addition, the influence of the chute inclination angle on the size segregation and burden profile during the charging process was investigated.