No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are most...No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.展开更多
Xitian tin-polymetallic deposit, located in the eastern Hunan Province, SE China, hosts quartz vein and skarn in the contact zone between carbonate and two stages granites. Critical geodynamic questions for South Chin...Xitian tin-polymetallic deposit, located in the eastern Hunan Province, SE China, hosts quartz vein and skarn in the contact zone between carbonate and two stages granites. Critical geodynamic questions for South China are whether different types of mineralization form in the same time and how the magmatism–tectonic system controls the ore-forming process. Based on the distribution of the orebodies, six cassiterite samples from different types of mineralization are collected for dating. In-situ LA-MCICP-MS U–Pb isotopic data yielded concordia low intercept ages between 154 and 157 Ma, indicating that different types of mineralization belong to the same magmatism–mineralization system. Coupled with the study of the kinematic indicators, it suggests that the structural control of the wall rocks constrain the types of mineralization. These results provide further evidence of a close temporal link between the structure and the tin-polymetallic mineralization in Xitian deposit. Considering the structure in the district, granite dome plays an important role in the ore-forming process. The age and structural signatures in Xitian deposit are the response to the subduction of Pacific Plate.展开更多
By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a researc...By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a research into the interrelation between tecto-geochemistry and structural stress field,revealedthe mechanism of metallogenesis by magma and ore-forming fluids driven under dynamic forces,andproposed a tecto-geochemistry model for the formation of the ore deposits,so as to suggest a basis oftheory for the prognoses of location and magnitude of hidden deposits.展开更多
For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena...For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena. Then, the mineral sources and their characteristics were discussed based on the classical lead isotope discriminating model. The results show that the lead isotope ratios of206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb range from 17.478 to 18.638, 15.440 to 15.858, and 37.556 to 39.501, respectively. According to Zartman lead model, the ore lead contains the upper crust composition; however, the granite does not provide all ore leads, and other material sources exist. Obviously, the ore deposit belongs to the result of the combined effect of crust?mantle. The source rocks are characterized by a certain degree of similarity with the island arc material. Moreover, its distant origin in the upper and lower crusts may be related to the subduction island arc material or oceanic crust. The mantle-derived material may have a certain status in the source region. Meanwhile, based on the lead isotope three-dimensional topology projection vectors, the ore leads are concentrated in zoneA, which indicates the characteristics of Yangtze lead isotope province and a possible genetic relationship with Yangtze block.展开更多
Furong, Hunan, is a large tin orefield discovered in China in recent years, which is mainly of the skarn-greisen-chlorite type. On the basis of the geological characteristics of the orefield, 40Ar-39Ar dating was perf...Furong, Hunan, is a large tin orefield discovered in China in recent years, which is mainly of the skarn-greisen-chlorite type. On the basis of the geological characteristics of the orefield, 40Ar-39Ar dating was performed on muscovite from greisen-type tin ore and biotite from related amphibole-biotite granite, which yielded three sets of age data, i.e., a plateau age of 157.5±0.3 Ma and an isochron age of 156.9±3 Ma for amphibole-biotite granite; a plateau age of 156.1±0.4 Ma and an isochron age of 155.7±1.7 Ma for the Sanmen greisen-type tin ore; and a plateau age of 160.1±0.9 Ma and an isochron age of 157.5±1.5 Ma for the Taoxiwo greisen-type tin ore. The three sets of age data coincide well with each other. They not only accurately reflect the timing of rock and ore formation but also indicate close relations between granite and tin deposits. In addition, the plateau ages of all three sets suggest that no subsequent thermal perturbation event occurred after the formation of granite and tin deposits. The Furong tin orefield is a component part of the southern Hunan large tungsten-tin polymetallic deposit concentration area and also a representative deposit formed in the time interval of 160-135 Ma in four peaks of Mesozoic tungsten-tin mineralization in the South China region. They might still correspond to the middle and late stages of the major geodynamic transition from a N-S- to an E-W-direction in eastern China.展开更多
华南是我国最重要的锡成矿省,产有大量的与花岗岩有关的大型-超大型锡多金属矿床。近年来,在湘南新探明一个超大型锡矿床—芙蓉锡矿床,其中,最重要的锡矿化产在骑田岭花岗岩体西南部的破碎蚀变带内,与绿泥石化密切相关。骑田岭花岗岩富...华南是我国最重要的锡成矿省,产有大量的与花岗岩有关的大型-超大型锡多金属矿床。近年来,在湘南新探明一个超大型锡矿床—芙蓉锡矿床,其中,最重要的锡矿化产在骑田岭花岗岩体西南部的破碎蚀变带内,与绿泥石化密切相关。骑田岭花岗岩富含角闪石,具有较高的氧逸度,显示出准铝的地球化学特征,在花岗岩形成过程中发生过壳-慢岩浆混合作用。这些特点都表明骑田岭花岗宕并不同于一般的 S 型含锡花岗岩,而显示出 A 型花岗岩的地球化学特征。同位素定年分析表明,芙蓉锡矿床主成矿阶段的形成时代要晚于骑田岭花岗岩侵位年龄近20Ma。氢、氧同位素分析表明,发生过水-岩反应的大气降水在成矿流体中占有很重要的地位。硫同位素分析表明花岗岩和地层都提供了成矿所需的硫。因此,用花岗岩浆结晶分异过程中分离出富锡的岩浆流体来形成锡矿的传统模式并不适合于解释芙蓉锡矿的形成。我们认为芙蓉锡矿的形成主要与骑田岭花岗岩的绿泥石化蚀变有关,循环的大气降水与花岗岩发生水-岩反应,富锡的铁镁矿物在蚀变成绿泥石的同时释放出 Sn 和 Ti 等金属到流体中,当物理化学条件改变时,沉淀形成锡矿体。这是一种比较独特的锡矿化模式,丰富了华南与花岗岩有关的锡矿化类型。展开更多
基金Project(41202051) supported by the National Natural Science Foundation of ChinaProject(2012M521721) supported by China Postdoctoral Science FoundationProject(CSUZC2013021) supported by Valuable Equipment Open Sharing Fund of Central South University,China
文摘No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.
基金financially supported by the Public Welfare Project of the Ministry of land and Resources of China (201211024-04)National Key R&D Program of China (2016YFC0600401)+1 种基金National Science Foundation of China (NSFC Grant 41273046)Research Cooperation between Institute and University of Chinese Academy of Sciences Grant (Y552012Y00)
文摘Xitian tin-polymetallic deposit, located in the eastern Hunan Province, SE China, hosts quartz vein and skarn in the contact zone between carbonate and two stages granites. Critical geodynamic questions for South China are whether different types of mineralization form in the same time and how the magmatism–tectonic system controls the ore-forming process. Based on the distribution of the orebodies, six cassiterite samples from different types of mineralization are collected for dating. In-situ LA-MCICP-MS U–Pb isotopic data yielded concordia low intercept ages between 154 and 157 Ma, indicating that different types of mineralization belong to the same magmatism–mineralization system. Coupled with the study of the kinematic indicators, it suggests that the structural control of the wall rocks constrain the types of mineralization. These results provide further evidence of a close temporal link between the structure and the tin-polymetallic mineralization in Xitian deposit. Considering the structure in the district, granite dome plays an important role in the ore-forming process. The age and structural signatures in Xitian deposit are the response to the subduction of Pacific Plate.
文摘By means of multivariance analysis and finite element on the basis of the analysis of generation andevolution of structural systems and structural system of syn-metallogenesis in the orefield,the authorsmade a research into the interrelation between tecto-geochemistry and structural stress field,revealedthe mechanism of metallogenesis by magma and ore-forming fluids driven under dynamic forces,andproposed a tecto-geochemistry model for the formation of the ore deposits,so as to suggest a basis oftheory for the prognoses of location and magnitude of hidden deposits.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(S2014GK3005)supported by Hunan Industrial Science and Technology Support Program+1 种基金Project(2012M521721)supported by China Postdoctoral Science FoundationProject(CSUZC2013021)supported by the Open-end Fund for the Valuable and Precision Instruments of Central South University,China
文摘For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena. Then, the mineral sources and their characteristics were discussed based on the classical lead isotope discriminating model. The results show that the lead isotope ratios of206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb range from 17.478 to 18.638, 15.440 to 15.858, and 37.556 to 39.501, respectively. According to Zartman lead model, the ore lead contains the upper crust composition; however, the granite does not provide all ore leads, and other material sources exist. Obviously, the ore deposit belongs to the result of the combined effect of crust?mantle. The source rocks are characterized by a certain degree of similarity with the island arc material. Moreover, its distant origin in the upper and lower crusts may be related to the subduction island arc material or oceanic crust. The mantle-derived material may have a certain status in the source region. Meanwhile, based on the lead isotope three-dimensional topology projection vectors, the ore leads are concentrated in zoneA, which indicates the characteristics of Yangtze lead isotope province and a possible genetic relationship with Yangtze block.
文摘Furong, Hunan, is a large tin orefield discovered in China in recent years, which is mainly of the skarn-greisen-chlorite type. On the basis of the geological characteristics of the orefield, 40Ar-39Ar dating was performed on muscovite from greisen-type tin ore and biotite from related amphibole-biotite granite, which yielded three sets of age data, i.e., a plateau age of 157.5±0.3 Ma and an isochron age of 156.9±3 Ma for amphibole-biotite granite; a plateau age of 156.1±0.4 Ma and an isochron age of 155.7±1.7 Ma for the Sanmen greisen-type tin ore; and a plateau age of 160.1±0.9 Ma and an isochron age of 157.5±1.5 Ma for the Taoxiwo greisen-type tin ore. The three sets of age data coincide well with each other. They not only accurately reflect the timing of rock and ore formation but also indicate close relations between granite and tin deposits. In addition, the plateau ages of all three sets suggest that no subsequent thermal perturbation event occurred after the formation of granite and tin deposits. The Furong tin orefield is a component part of the southern Hunan large tungsten-tin polymetallic deposit concentration area and also a representative deposit formed in the time interval of 160-135 Ma in four peaks of Mesozoic tungsten-tin mineralization in the South China region. They might still correspond to the middle and late stages of the major geodynamic transition from a N-S- to an E-W-direction in eastern China.
文摘华南是我国最重要的锡成矿省,产有大量的与花岗岩有关的大型-超大型锡多金属矿床。近年来,在湘南新探明一个超大型锡矿床—芙蓉锡矿床,其中,最重要的锡矿化产在骑田岭花岗岩体西南部的破碎蚀变带内,与绿泥石化密切相关。骑田岭花岗岩富含角闪石,具有较高的氧逸度,显示出准铝的地球化学特征,在花岗岩形成过程中发生过壳-慢岩浆混合作用。这些特点都表明骑田岭花岗宕并不同于一般的 S 型含锡花岗岩,而显示出 A 型花岗岩的地球化学特征。同位素定年分析表明,芙蓉锡矿床主成矿阶段的形成时代要晚于骑田岭花岗岩侵位年龄近20Ma。氢、氧同位素分析表明,发生过水-岩反应的大气降水在成矿流体中占有很重要的地位。硫同位素分析表明花岗岩和地层都提供了成矿所需的硫。因此,用花岗岩浆结晶分异过程中分离出富锡的岩浆流体来形成锡矿的传统模式并不适合于解释芙蓉锡矿的形成。我们认为芙蓉锡矿的形成主要与骑田岭花岗岩的绿泥石化蚀变有关,循环的大气降水与花岗岩发生水-岩反应,富锡的铁镁矿物在蚀变成绿泥石的同时释放出 Sn 和 Ti 等金属到流体中,当物理化学条件改变时,沉淀形成锡矿体。这是一种比较独特的锡矿化模式,丰富了华南与花岗岩有关的锡矿化类型。