Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases c...Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases caused by phytopathogens are as a result of biofilms formation.Fusarium wilt of banana(Panama disease)is caused by a soil-borne pathogen called Fusarium oxysporum f.sp.cubense.Fusarium oxysporum occurs in a form of a species complex(FOSC)which encompasses a crowd of strains.Horizontal genetic factor transfer may donate to the observed assortment in pathogenic strains,while sexual reproduction is unknown in the FOSC.Fusarium wilt is a notorious disease on several crops worldwide.Yield loss caused by this pathogen is huge,and significant to destroy crop yields annually,thereby affecting the producer countries in various continents of the world.The disease is also resistant to various synthetic chemical fungicides.However,excessive use of synthetic fungicides during disease control could be lethal to humans,animals,and plants.This calls for alternative eco-friendly management of this disease by targeting the biofilms formation and finally suppressing this devastating phytopathogen.In this review,we,therefore,described the damage caused by Fusarium wilt disease,the concept of filamentous fungal biofilms,classical control strategies,sustainable disease control strategies using essential oils,and prevention and control of vegetables Fusarium wilt diseases.展开更多
Both Fusarium and Verticillium wilts are important soil-borne diseases,which can not be effectively controlled by chemical fungicides.The two diseases,especially Verticillium wilt,have
Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this stu...Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this study, with methylation-sensitive amplification polymorphism (MSAP) technique, DNA methylation was compared between the leaves inoculated with Foc TR4 and the mock-inoculated leaves at different pathogenic stages. With 25 pairs of primers, 1 144 and 1 255 fragments were amplified from the infected and mock-inoculated leaves, respectively. DNA methylation was both changed and the average methylated CCGG sequences were 34.81 and 29.26% for the infected and the mock-inoculated leaves. And DNA hypermethylation and hypomethylation were induced by pathogen infection during all pathogenic stages. Further, 69 polymorphic fragments were sequenced and 29 of them showed sequence similarity to genes with known functions. And RT-PCR results of four genes indicated that their expression patterns were consistent with their methylation patterns. Our results suggest that DNA methylation plays important roles in pathogenic response to Foc TR4 for banana.展开更多
We collected infection plants of rice bakanae desiease from 22 counties (cities) in Hubei Province in 1990-1992. Thirty five isolates of single spore were isolated from the plants. Fusarium species were identified fro...We collected infection plants of rice bakanae desiease from 22 counties (cities) in Hubei Province in 1990-1992. Thirty five isolates of single spore were isolated from the plants. Fusarium species were identified from these isolates based on the method of Booth(1971) and other authors. Six kinds of medium wereused in the experiment. Color and growth rate ofcolonies as well as other characters were determinedfrom cultures grown on PSA. The results showedthat thirty one isolates were Fusarium moniliformevar. zhejiangensis, two isolates were Fusariumgramineum, one was Fusariurn oxysporum, and onewas Fusarium solani.展开更多
Sesame is an ancient oilseed crop with high oil content and quality.However,the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear.Here,we report chromosome-scale genomes of cu...Sesame is an ancient oilseed crop with high oil content and quality.However,the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear.Here,we report chromosome-scale genomes of cultivated sesame(Sesamum indicum L.)and six wild Sesamum species,representing all three karyotypes within this genus.Karyotyping and genome-based phylogenic analysis revealed the evolutionary route of Sesamum species from n=13 to n=16 and revealed that allotetraploidization occurred in the wild species Sesamum radiatum.Early divergence of the Sesamum genus(48.5–19.7 million years ago)during the Tertiary period and its ancient phylogenic position within eudicots were observed.Pan-genome analysis revealed 9164 core gene families in the 7Sesamumspecies.These families are significantly enriched in variousmetabolic pathways,including fatty acid(FA)metabolism and FA biosynthesis.Structural variations in SiPT1 and SiDT1 within the phosphatidyl ethanolamine-binding protein gene family lead to the genomic evolution of plant-architecture and inflorescence-development phenotypes in Sesamum.A genome-wide association study(GWAS)of an interspecific population and genome comparisons revealed a long terminal repeat insertion and a sequence deletion inDIR genes of wildSesamum angustifoliumand cultivated sesame,respectively;both variations independently cause high susceptibility toFusariumwilt disease.A GWAS of 560 sesame accessions combined with an overexpression study confirmed that the NAC1andPPOgenes play an important role in upregulating oil content of sesame.Our study provides high-quality genomic resources for cultivated and wild Sesamum species and insights that can improve molecular breeding strategies for sesame and other oilseed crops.展开更多
基金the Ministry of Higher Education Malaysia for providing funds under the Long-term Research Grant Scheme(LRGS/1/2019/UPM/2/2)。
文摘Fusarium species were reported to produce biofilms.Biofilms are superficial societies of microbes bounded and endangered by being situated or taking place outside a cell or cells.The most destructive fungal diseases caused by phytopathogens are as a result of biofilms formation.Fusarium wilt of banana(Panama disease)is caused by a soil-borne pathogen called Fusarium oxysporum f.sp.cubense.Fusarium oxysporum occurs in a form of a species complex(FOSC)which encompasses a crowd of strains.Horizontal genetic factor transfer may donate to the observed assortment in pathogenic strains,while sexual reproduction is unknown in the FOSC.Fusarium wilt is a notorious disease on several crops worldwide.Yield loss caused by this pathogen is huge,and significant to destroy crop yields annually,thereby affecting the producer countries in various continents of the world.The disease is also resistant to various synthetic chemical fungicides.However,excessive use of synthetic fungicides during disease control could be lethal to humans,animals,and plants.This calls for alternative eco-friendly management of this disease by targeting the biofilms formation and finally suppressing this devastating phytopathogen.In this review,we,therefore,described the damage caused by Fusarium wilt disease,the concept of filamentous fungal biofilms,classical control strategies,sustainable disease control strategies using essential oils,and prevention and control of vegetables Fusarium wilt diseases.
文摘Both Fusarium and Verticillium wilts are important soil-borne diseases,which can not be effectively controlled by chemical fungicides.The two diseases,especially Verticillium wilt,have
基金supported by the National Natural Science Foundation of China (30860149 and 31360364)the Joint Support Program from Tropical Crop Breeding Engineering Center of Ministry of Education of China+1 种基金the Crop Science National Key Disciplines of China (lhxm-2012-2)the Key Scientific Research Program from Hainan Province,China (ZDZX2013023)
文摘Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this study, with methylation-sensitive amplification polymorphism (MSAP) technique, DNA methylation was compared between the leaves inoculated with Foc TR4 and the mock-inoculated leaves at different pathogenic stages. With 25 pairs of primers, 1 144 and 1 255 fragments were amplified from the infected and mock-inoculated leaves, respectively. DNA methylation was both changed and the average methylated CCGG sequences were 34.81 and 29.26% for the infected and the mock-inoculated leaves. And DNA hypermethylation and hypomethylation were induced by pathogen infection during all pathogenic stages. Further, 69 polymorphic fragments were sequenced and 29 of them showed sequence similarity to genes with known functions. And RT-PCR results of four genes indicated that their expression patterns were consistent with their methylation patterns. Our results suggest that DNA methylation plays important roles in pathogenic response to Foc TR4 for banana.
文摘We collected infection plants of rice bakanae desiease from 22 counties (cities) in Hubei Province in 1990-1992. Thirty five isolates of single spore were isolated from the plants. Fusarium species were identified from these isolates based on the method of Booth(1971) and other authors. Six kinds of medium wereused in the experiment. Color and growth rate ofcolonies as well as other characters were determinedfrom cultures grown on PSA. The results showedthat thirty one isolates were Fusarium moniliformevar. zhejiangensis, two isolates were Fusariumgramineum, one was Fusariurn oxysporum, and onewas Fusarium solani.
基金supported by earmarked funding for the China Agricultural Research System of MOF and MARA (CARS-14),Chinathe China National"973"Project (2011CB109304),China+5 种基金the Henan Zhongyuan Scientist Work Station Construction Fund (092101211100),Chinathe National Natural Science Foundation of China (U1204318,U1304321,31301653,31471537,and 32172094),Chinathe Key Project of Science and Technology of Henan Province (201300110600),Chinathe Key Research Project of the Shennong Laboratory (SN01-2022-04),Chinathe Key Research and Development Project of Henan Province (221111520400),Chinathe Innovation Scientists and Technicians Troop Construction Project of the Henan Academy of Agricultural Sciences (2023TD04),China.
文摘Sesame is an ancient oilseed crop with high oil content and quality.However,the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear.Here,we report chromosome-scale genomes of cultivated sesame(Sesamum indicum L.)and six wild Sesamum species,representing all three karyotypes within this genus.Karyotyping and genome-based phylogenic analysis revealed the evolutionary route of Sesamum species from n=13 to n=16 and revealed that allotetraploidization occurred in the wild species Sesamum radiatum.Early divergence of the Sesamum genus(48.5–19.7 million years ago)during the Tertiary period and its ancient phylogenic position within eudicots were observed.Pan-genome analysis revealed 9164 core gene families in the 7Sesamumspecies.These families are significantly enriched in variousmetabolic pathways,including fatty acid(FA)metabolism and FA biosynthesis.Structural variations in SiPT1 and SiDT1 within the phosphatidyl ethanolamine-binding protein gene family lead to the genomic evolution of plant-architecture and inflorescence-development phenotypes in Sesamum.A genome-wide association study(GWAS)of an interspecific population and genome comparisons revealed a long terminal repeat insertion and a sequence deletion inDIR genes of wildSesamum angustifoliumand cultivated sesame,respectively;both variations independently cause high susceptibility toFusariumwilt disease.A GWAS of 560 sesame accessions combined with an overexpression study confirmed that the NAC1andPPOgenes play an important role in upregulating oil content of sesame.Our study provides high-quality genomic resources for cultivated and wild Sesamum species and insights that can improve molecular breeding strategies for sesame and other oilseed crops.