This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early applic...This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.展开更多
1 Introduction The Paleogene strata(with a depth of more than 2500m)in the Bohai sea is complex(Xu Changgui,2006),the reservoir buried deeply,the reservoir prediction is difficult(LAI Weicheng,XU Changgui,2012),and more
A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity w...A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity working in the TE18,7 mode at 105 GHz and the TE24,9 mode at 140 GHz.A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies.For the proof-test phase,the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of~500 k W for a short-pulse duration.In the preliminary short-pulse proof-test in the first quarter of2021,the dual-frequency gyrotron achieved output powers of 300 k W at 105 GHz and 540 k W at140 GHz,respectively,under 5 Hz 1 ms continuous pulse-burst operations.Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window.This gyrotron design was preliminarily validated.展开更多
Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of...Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of carbon doping on the lattice structure and superconducting properties of Mg^(11)B_(2)bulks were evaluated using X-ray powder diffraction,high resolution transmission electron microscopy,scanning electron microscopy and magnetization measurements.Precise refinement of structural parameters indicates successful substitution of carbon in Mg^(11)B_(2)bulks.The critical current density(Jc)of carbon doped Mg^(11)B_(2)synthesized at 650℃was enhanced more than two times compared with the pure Mg^(11)B_(2)bulk.Similar improvement was observed for the Mg^(11)B_(2)bulks heat-treated at 800℃.This enhancement is due to successful substitution of biomass-derived carbon with high surface area into Mg^(11)B_(2)lattice.The flux pinning mechanism of pure and doped Mg^(11)B_(2)bulks were investigated using the Dew-Hughes model.This study provides information regarding enhancement of the Jc of low activation Mg^(11)B_(2)superconductors suitable for next-generation fusion magnets.展开更多
文摘This paper proposes a sub-critical nuclear energy system driven by fusion neutron source, FDS, which can be used to transmute long-lived radioactive wastes and to produce fissile nuclear fuel as a way for early application of fusion technology. The necessity and feasibility to develop that system in China are illustrated on the basis of prediction of the demand of energy source in the first half of the 21th century, the status of current fission energy supply and the progress in fusion technology in the world. The characteristics of fusion neutron driver and the potential for transmutation of long-lived nuclear wastes and breeding of fissile nuclear fuel in a blanket are analyzed. A scenario of development steps is proposed.
基金funded by Major Projects of National Science and Technology “Large Oil and Gas Fields and CBM development”(Grant No. 2016ZX05 027)
文摘1 Introduction The Paleogene strata(with a depth of more than 2500m)in the Bohai sea is complex(Xu Changgui,2006),the reservoir buried deeply,the reservoir prediction is difficult(LAI Weicheng,XU Changgui,2012),and more
基金supported in part by NSAF(No.U1830201)in part by the State Administration of Science,Technology and Industry for Nation Defense of China,Technology Foundation Project(No.JSJL2019212B006)+1 种基金in part by the Academy Innovation Funder(No.CX2020038)in part by the National Defense Basic Scientific Research Program(No.2018212C015)。
文摘A dual-frequency(105/140 GHz)MW-level continuous-wave gyrotron was developed for fusion application at Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron employs a cylindrical cavity working in the TE18,7 mode at 105 GHz and the TE24,9 mode at 140 GHz.A triode magnetron injection gun and a built-in quasi-optical mode converter were designed to operate at these two frequencies.For the proof-test phase,the gyrotron was equipped with a single-disk boron nitride window to achieve radio frequency output with a power of~500 k W for a short-pulse duration.In the preliminary short-pulse proof-test in the first quarter of2021,the dual-frequency gyrotron achieved output powers of 300 k W at 105 GHz and 540 k W at140 GHz,respectively,under 5 Hz 1 ms continuous pulse-burst operations.Power upgrade and pulse-width extension were hampered by the limitation of the high-voltage power supply and output window.This gyrotron design was preliminarily validated.
基金the Queensland Government for Advance Queensland Research Fellowship in partnership with Siemens Energy(Aust)Pty Ltd and QUT which partially supported this workby the Australian Research Council,Australia(Grant No.LP160101784)。
文摘Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of carbon doping on the lattice structure and superconducting properties of Mg^(11)B_(2)bulks were evaluated using X-ray powder diffraction,high resolution transmission electron microscopy,scanning electron microscopy and magnetization measurements.Precise refinement of structural parameters indicates successful substitution of carbon in Mg^(11)B_(2)bulks.The critical current density(Jc)of carbon doped Mg^(11)B_(2)synthesized at 650℃was enhanced more than two times compared with the pure Mg^(11)B_(2)bulk.Similar improvement was observed for the Mg^(11)B_(2)bulks heat-treated at 800℃.This enhancement is due to successful substitution of biomass-derived carbon with high surface area into Mg^(11)B_(2)lattice.The flux pinning mechanism of pure and doped Mg^(11)B_(2)bulks were investigated using the Dew-Hughes model.This study provides information regarding enhancement of the Jc of low activation Mg^(11)B_(2)superconductors suitable for next-generation fusion magnets.