Zonal flows self-generated by turbulence play an important role in regulating turbulence,reducing transport level,and thus improve plasma confinement in fusion plasmas.The zonal flows and geodesic acoustic modes have ...Zonal flows self-generated by turbulence play an important role in regulating turbulence,reducing transport level,and thus improve plasma confinement in fusion plasmas.The zonal flows and geodesic acoustic modes have been identified in various devices.The related issues,such as the poloidal and toroidal symmetries,coupling to turbulence,effects on turbulence and transport,nonlinear energy transfer between turbulence and zonal flows,dependence of the plasma parameters,roles in the confinement regime transitions etc are overviewed briefly in this paper.The interaction between zonal flows and magnetic islands is emphasized.展开更多
The dispersion relation and damping rate of kinetic Alfvén waves(KAWs) in a deuterium-tritium fusion plasma with slowing-down distributed α-particles are investigated using the kinetic theory. The variations of ...The dispersion relation and damping rate of kinetic Alfvén waves(KAWs) in a deuterium-tritium fusion plasma with slowing-down distributed α-particles are investigated using the kinetic theory. The variations of wave frequency and damping rate with respect to the α concentration(n_(α)/n_(e)) and perpendicular wave number(k_(⊥)) are studied from a numerical way. The results show that the fluctuation of α concentration slightly affects the frequency and damping rate of KAWs at low n_(α)/n_(e). In addition, the frequency and the damping rate increase as the k_(⊥) and the background temperature Te increase. For comparison, the calculations are performed also in the case of α-particles following an equivalent Maxwellian distribution. For a given k_(⊥), the value of the frequency obtained in the slowing-down distribution case is smaller than that obtained in the Maxwellian distribution case. Conversely, the value of the damping rate obtained in the slowing-down distribution case is slightly larger than that obtained in the Maxwellian distribution case.展开更多
Fundamental quantum transport equation for impact-ionization processes in fusion plasmas is formulated in the actor-spectator description. The density-matrix formulism is adopted to treat both coherent and incoherent ...Fundamental quantum transport equation for impact-ionization processes in fusion plasmas is formulated in the actor-spectator description. The density-matrix formulism is adopted to treat both coherent and incoherent effects in a unified fashion. Quantum electrodynamic effects are also considered for high-temperature scenarios. Electron-impact ionization of uranium ion U91+ and proton-impact ionization of hydrogen are given as examples.展开更多
The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process...The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.展开更多
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn...In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.展开更多
Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is sear...Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.展开更多
Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is sear...Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.展开更多
Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important Laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is sear...Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important Laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.展开更多
Quantum effects play an enhancement role in p-p chain reactions occurring within stars. Such an enhancement is quantified by a wave penetration factor that is proportional to the density of the participating fuel part...Quantum effects play an enhancement role in p-p chain reactions occurring within stars. Such an enhancement is quantified by a wave penetration factor that is proportional to the density of the participating fuel particles. This leads to an innovative theory for dense plasma, and its result shows good agreement with independent data derived from the solar energy output. An analysis of the first Z-pinch machine in mankind's history exhibiting neutron emission leads to a derived deuterium plasma beam density greater than that of water, with plasma velocities exceeding 10000 km/s. Fusion power could be achieved by the intersection of four such pinched plasma beams with powerful head-on collisions in their common focal region due to the beam and target enhanced reaction.展开更多
The main purpose of this work is to shed light on the possibility of producing huge amount of energy based on the construction matter-antimatter plasma in a molecular crystal. It is assumed that two beams of isotherma...The main purpose of this work is to shed light on the possibility of producing huge amount of energy based on the construction matter-antimatter plasma in a molecular crystal. It is assumed that two beams of isothermal hydrogen and antihydrogen are injected into a palladium crystal leading to a plasma state composed of particles and antiparticles. The collapse of this state releases a huge amount of energy which can be used as fuel for space shuttles. Thus, the novel system of isothermal pressure interaction enhances the energy power carried out by the quantum ion acoustic soliton (QIAS). In addition to the energy power released from the particle-antiparticle annihilation. The probability of merging the energy from these two cases is available at certain condition. The released energy may be a significant step in solving the energy scape of Tokomak to produce fusion energy. The study starting from the one-dimensional quantum hydrodynamic model (in which the term of electron-positron and proton-antiproton for hydrogen-antihydrogen is included), a Korteweg de Vries equation (kdv) is derived, the QIAS energy experiences and the annihilation energy power are calculated. It is found that the total energy of QIAS and the energy resulting from hydrogen-antihydrogen annihilation are important step towards the establishment of a cold fusion power station.展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB108004 and 2014GB107000)National Natural Science Foundation of China(Nos.11775069 and 11320101005)
文摘Zonal flows self-generated by turbulence play an important role in regulating turbulence,reducing transport level,and thus improve plasma confinement in fusion plasmas.The zonal flows and geodesic acoustic modes have been identified in various devices.The related issues,such as the poloidal and toroidal symmetries,coupling to turbulence,effects on turbulence and transport,nonlinear energy transfer between turbulence and zonal flows,dependence of the plasma parameters,roles in the confinement regime transitions etc are overviewed briefly in this paper.The interaction between zonal flows and magnetic islands is emphasized.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11863004 and 11763006)the Jiangxi Provincial Key Laboratory of Fusion and Information Control, China (Grant No. 20171BCD40005)the Project of Scientific and Technological Innovation Base of Jiangxi Province, China (Grant No. 20203CCD46008)。
文摘The dispersion relation and damping rate of kinetic Alfvén waves(KAWs) in a deuterium-tritium fusion plasma with slowing-down distributed α-particles are investigated using the kinetic theory. The variations of wave frequency and damping rate with respect to the α concentration(n_(α)/n_(e)) and perpendicular wave number(k_(⊥)) are studied from a numerical way. The results show that the fluctuation of α concentration slightly affects the frequency and damping rate of KAWs at low n_(α)/n_(e). In addition, the frequency and the damping rate increase as the k_(⊥) and the background temperature Te increase. For comparison, the calculations are performed also in the case of α-particles following an equivalent Maxwellian distribution. For a given k_(⊥), the value of the frequency obtained in the slowing-down distribution case is smaller than that obtained in the Maxwellian distribution case. Conversely, the value of the damping rate obtained in the slowing-down distribution case is slightly larger than that obtained in the Maxwellian distribution case.
文摘Fundamental quantum transport equation for impact-ionization processes in fusion plasmas is formulated in the actor-spectator description. The density-matrix formulism is adopted to treat both coherent and incoherent effects in a unified fashion. Quantum electrodynamic effects are also considered for high-temperature scenarios. Electron-impact ionization of uranium ion U91+ and proton-impact ionization of hydrogen are given as examples.
文摘The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.
文摘In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.
文摘Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.
文摘Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.
文摘Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), one of the most important Laboratories on magnetically confined fusion in China and the Nuclear Fusion Research Center of the World Laboratory, is searching for 5 senior and 10 junior scientists of plasma and fusion in the following superconducting tokamak research areas: theory and simulation, diverter and edge physics, plasma diagnostics, electron cyclotron resonant heating, ion cyclotron resonant heating, lower hybrid wave, neutral beam injection, reactor design, fusion material, superconducting engineering.
基金supported by the Fund for the Construction of Graduate Degree of China(No.2014XWD-S0805)
文摘Quantum effects play an enhancement role in p-p chain reactions occurring within stars. Such an enhancement is quantified by a wave penetration factor that is proportional to the density of the participating fuel particles. This leads to an innovative theory for dense plasma, and its result shows good agreement with independent data derived from the solar energy output. An analysis of the first Z-pinch machine in mankind's history exhibiting neutron emission leads to a derived deuterium plasma beam density greater than that of water, with plasma velocities exceeding 10000 km/s. Fusion power could be achieved by the intersection of four such pinched plasma beams with powerful head-on collisions in their common focal region due to the beam and target enhanced reaction.
文摘The main purpose of this work is to shed light on the possibility of producing huge amount of energy based on the construction matter-antimatter plasma in a molecular crystal. It is assumed that two beams of isothermal hydrogen and antihydrogen are injected into a palladium crystal leading to a plasma state composed of particles and antiparticles. The collapse of this state releases a huge amount of energy which can be used as fuel for space shuttles. Thus, the novel system of isothermal pressure interaction enhances the energy power carried out by the quantum ion acoustic soliton (QIAS). In addition to the energy power released from the particle-antiparticle annihilation. The probability of merging the energy from these two cases is available at certain condition. The released energy may be a significant step in solving the energy scape of Tokomak to produce fusion energy. The study starting from the one-dimensional quantum hydrodynamic model (in which the term of electron-positron and proton-antiproton for hydrogen-antihydrogen is included), a Korteweg de Vries equation (kdv) is derived, the QIAS energy experiences and the annihilation energy power are calculated. It is found that the total energy of QIAS and the energy resulting from hydrogen-antihydrogen annihilation are important step towards the establishment of a cold fusion power station.
基金the support of PID2021-124341OB-C22 and PID2021-124341OB-C21(MCIU/AEI/FEDER,UE)ADITIMAT-CM(S2018/NMT-4411,Regional Government of Madrid and EU Structural Funds)+2 种基金the support of RYC-2017-21843the support of PEJD-2019-POST/IND-16119(Regional Government of Madrid and EU Structural Funds)FEI-EU-20-05(UCM)。