Abstract The effects of mass asymmetry on the production of superheavy nuclei(SHN),within the dinuclear system model,are investigated in this study.It is observed that the fusion probability decreases with decreasing ...Abstract The effects of mass asymmetry on the production of superheavy nuclei(SHN),within the dinuclear system model,are investigated in this study.It is observed that the fusion probability decreases with decreasing mass asymmetry.A total of 192 possible combinations of projectiles from O to Ti and targets with half-lives longer than30 days for producing SHN^(264)Db,^(265)Db,^(267)Sg,^(268)Bh,268Sg,^(269)Bh,^(271)Hs,^(271)Mt,^(272)Hs,^(272)Mt,^(273)Mt,^(274)Ds,275Ds,^(275)Rg,^(276)Ds,^(276)Rg,^(277)Rg,^(278)Cn,^(279)Cn,and^(280)Cn are examined.Further,the optimal combinations and incident energies for synthesizing these nuclei are predicted.Most of the cross sections for production of SHNare larger than 10 pb;therefore,the process can be carried out with the available experimental equipment.展开更多
The laser fusion criterion is known as the ρR-Criterion, also called high-gain condition. This parameter is temperature dependent and can be calculated by R-matrix method. This method is applied for determining impro...The laser fusion criterion is known as the ρR-Criterion, also called high-gain condition. This parameter is temperature dependent and can be calculated by R-matrix method. This method is applied for determining improved fusion cross-section for the reactions T(d,n)4He, 3He(d,p)4He, D(d,p)T, D(d,n)3He. In this paper the time dependent reaction rate equations for fusion reaction T(d,n)4He are solved and by using the obtained results we computed the fu- sion power density, energy gain versus temperature and ρR-parameter. The obtained results show that a suitable com- bination may be a deuterium fraction fD=0.65 and fT=0.35 which would lead 30% reduction in the tritium content of the fuel mixture, and this choice would not change the energy gain value very much. Finally, the obtained energy gain for D-T reaction by using R-matrix is in good agreement with other theories.展开更多
By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is stud...By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is studied. It is shown that the promising impact parameter in the synthesis process can be released from zero to a value little smaller than the radius of the smaller nucleus involved in the reaction. Meanwhile, the compound nucleus may involve rich shape phases.展开更多
Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility e...Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be+209Bi, 208spb, 29Si and 27A1 reactions. The results show that applying these effects at agreement between the calculated and experimental cross sections parameter. energies near the Coulomb barrier improves the and modifies the mean values of the suppression展开更多
Alpha-induced reactions on 154^Sm,233,235,236,238^U, and 237^Np deformed nuclei are studied theoretically.The effects of hexadecapole deformation, deformed surface diffuseness parameter, and orientation on barrier hei...Alpha-induced reactions on 154^Sm,233,235,236,238^U, and 237^Np deformed nuclei are studied theoretically.The effects of hexadecapole deformation, deformed surface diffuseness parameter, and orientation on barrier height and position, fusion cross-section at any angle, and fusion cross-section have been investigated. Both hexadecapole deformation and deformed surface diffuseness can affect barrier characteristics and enhance fusion cross-section. Good agreement between experimental data and theoretical calculations with quadrupole and hexadecapole deformation and deformed surface diffuseness were observed for the 4^He+^154^Sm,235^U,237^Np reactions.展开更多
We calculate the reaction and the fusion cross-sections of neutron-rich heavy nuclei taking light exotic isotopes as projectiles. Results of neutron-rich Pb and U isotopes are demonstrated as the representative target...We calculate the reaction and the fusion cross-sections of neutron-rich heavy nuclei taking light exotic isotopes as projectiles. Results of neutron-rich Pb and U isotopes are demonstrated as the representative targets and He, B as the projectiles. The Gluaber Model and the Coupled Channel Formalism are used to evaluate the reaction and the fusion cross-sections for the cases considered. Based on the analysis of these cross-sections, we predict the formation of heavy, superheavy and super-superheavy elements through rapid neutron/ light nuclei capture r-process of the nucleosynthesis in astrophysical objects.展开更多
The production of superheavy nuclei with Z=108-116 via hot fusion reactions of the neutron-rich projectiles with 238U target is systematically studied.The results show that the production cross sections of superheavy ...The production of superheavy nuclei with Z=108-116 via hot fusion reactions of the neutron-rich projectiles with 238U target is systematically studied.The results show that the production cross sections of superheavy nuclei do not decrease monotonously as the atomic number Z increasing.The cross sections of the superheavy nuclei at Z = 112 and 115 are enhanced as compared with the whole Z-trend in synthesis of the superheavy nuclei,which clearly illustrates that the reactions with large negative Q-value and shell correction are more favorable to synthesize superheavy nuclei.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.11605296the Natural Science Foundation of Guangdong Province,China(Grant No.2016A030310208)the National Natural Science Foundation of China under Grant Nos.11875328,11405278 and 11605270
文摘Abstract The effects of mass asymmetry on the production of superheavy nuclei(SHN),within the dinuclear system model,are investigated in this study.It is observed that the fusion probability decreases with decreasing mass asymmetry.A total of 192 possible combinations of projectiles from O to Ti and targets with half-lives longer than30 days for producing SHN^(264)Db,^(265)Db,^(267)Sg,^(268)Bh,268Sg,^(269)Bh,^(271)Hs,^(271)Mt,^(272)Hs,^(272)Mt,^(273)Mt,^(274)Ds,275Ds,^(275)Rg,^(276)Ds,^(276)Rg,^(277)Rg,^(278)Cn,^(279)Cn,and^(280)Cn are examined.Further,the optimal combinations and incident energies for synthesizing these nuclei are predicted.Most of the cross sections for production of SHNare larger than 10 pb;therefore,the process can be carried out with the available experimental equipment.
文摘The laser fusion criterion is known as the ρR-Criterion, also called high-gain condition. This parameter is temperature dependent and can be calculated by R-matrix method. This method is applied for determining improved fusion cross-section for the reactions T(d,n)4He, 3He(d,p)4He, D(d,p)T, D(d,n)3He. In this paper the time dependent reaction rate equations for fusion reaction T(d,n)4He are solved and by using the obtained results we computed the fu- sion power density, energy gain versus temperature and ρR-parameter. The obtained results show that a suitable com- bination may be a deuterium fraction fD=0.65 and fT=0.35 which would lead 30% reduction in the tritium content of the fuel mixture, and this choice would not change the energy gain value very much. Finally, the obtained energy gain for D-T reaction by using R-matrix is in good agreement with other theories.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10425521, 10075002, and 10135030, the Major State Basic Research Development Programme under Grant No G2000077400, and Doctoral Program Foundation of the Ministry of Education of China under Grant No 20040001010, the Foundation for University Key Teacher by the Ministry of Education of China.
文摘By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is studied. It is shown that the promising impact parameter in the synthesis process can be released from zero to a value little smaller than the radius of the smaller nucleus involved in the reaction. Meanwhile, the compound nucleus may involve rich shape phases.
文摘Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be+209Bi, 208spb, 29Si and 27A1 reactions. The results show that applying these effects at agreement between the calculated and experimental cross sections parameter. energies near the Coulomb barrier improves the and modifies the mean values of the suppression
文摘Alpha-induced reactions on 154^Sm,233,235,236,238^U, and 237^Np deformed nuclei are studied theoretically.The effects of hexadecapole deformation, deformed surface diffuseness parameter, and orientation on barrier height and position, fusion cross-section at any angle, and fusion cross-section have been investigated. Both hexadecapole deformation and deformed surface diffuseness can affect barrier characteristics and enhance fusion cross-section. Good agreement between experimental data and theoretical calculations with quadrupole and hexadecapole deformation and deformed surface diffuseness were observed for the 4^He+^154^Sm,235^U,237^Np reactions.
文摘We calculate the reaction and the fusion cross-sections of neutron-rich heavy nuclei taking light exotic isotopes as projectiles. Results of neutron-rich Pb and U isotopes are demonstrated as the representative targets and He, B as the projectiles. The Gluaber Model and the Coupled Channel Formalism are used to evaluate the reaction and the fusion cross-sections for the cases considered. Based on the analysis of these cross-sections, we predict the formation of heavy, superheavy and super-superheavy elements through rapid neutron/ light nuclei capture r-process of the nucleosynthesis in astrophysical objects.
基金Supported by the National Natural Science Foundation of China (Grant Nos.10875013,10674016)the Specialized Research Foundation forthe Doctoral Program of Higher Education (Grant No.20080027005)
文摘The production of superheavy nuclei with Z=108-116 via hot fusion reactions of the neutron-rich projectiles with 238U target is systematically studied.The results show that the production cross sections of superheavy nuclei do not decrease monotonously as the atomic number Z increasing.The cross sections of the superheavy nuclei at Z = 112 and 115 are enhanced as compared with the whole Z-trend in synthesis of the superheavy nuclei,which clearly illustrates that the reactions with large negative Q-value and shell correction are more favorable to synthesize superheavy nuclei.