期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
复杂战场环境下改进YOLOv5军事目标识别算法研究 被引量:1
1
作者 宋晓茹 刘康 +2 位作者 高嵩 陈超波 阎坤 《兵工学报》 EI CAS CSCD 北大核心 2024年第3期934-947,共14页
复杂战场环境下军事目标识别技术是提升战场情报获取能力的基础和关键。针对当前军事目标识别技术在复杂战场环境下漏检误检率高、实时性差等问题,提出一种基于改进YOLOv5模型的PB-YOLO军事目标识别算法。将改进的目标识别算法对于陆战... 复杂战场环境下军事目标识别技术是提升战场情报获取能力的基础和关键。针对当前军事目标识别技术在复杂战场环境下漏检误检率高、实时性差等问题,提出一种基于改进YOLOv5模型的PB-YOLO军事目标识别算法。将改进的目标识别算法对于陆战场军事单元的识别锚框进行重新聚类,以提升模型对于目标大小适应度,加速模型收敛;采用通道-空间并行注意力机制,增加模型对复杂战场环境下目标特征信息与位置信息关注度;在特征融合网络部分使用BiFPN以提升模型对于特征的融合能力与速度;采用Alpha_IoU损失函数加速模型收敛,解决当真实框与预测框重合时IoU计算退化问题。实验结果表明,在自建军事目标数据集下,改进算法与主流目标识别算法相比,在保证模型空间复杂度的同时,mAP值达到了90.17%。消融实验对比结果表明,改进后网络较原模型精度提升11.57%,具有较好的识别性能,能够为战场情报获取提供有效的技术支撑。 展开更多
关键词 军事目标识别 通道-空间并行注意力机制 特征融合 损失函数
下载PDF
适用于约束环境的轻量级目标检测模型
2
作者 曲海成 袁旭东 李佳琦 《计算机工程与应用》 CSCD 北大核心 2024年第6期274-281,共8页
为了进一步降低目标检测模型YOLOX-Tiny的大小并提高检测精度,以便于更好地适用于计算资源和存储空间有限的环境,在特征金字塔的结构、解耦头的结构和损失函数上对其进行改进,形成一种更高性能的轻量级目标检测模型Lite-YOLOX。为进一... 为了进一步降低目标检测模型YOLOX-Tiny的大小并提高检测精度,以便于更好地适用于计算资源和存储空间有限的环境,在特征金字塔的结构、解耦头的结构和损失函数上对其进行改进,形成一种更高性能的轻量级目标检测模型Lite-YOLOX。为进一步压缩原有模型体积,重新设计特征金字塔和解耦头的结构,使模型的Neck和Head部分更轻量化;为提升模型的检测精度,在原有IoU损失函数的基础上进行优化,设计并提出EIoU损失函数,改进后的损失函数对真实框和预测框的位置更加敏感;选取PASCAL VOC和安全帽检测数据集对改进模型进行验证。实验结果表明:Lite-YOLOX与YOLOX-Tiny相比,参数量减少40%,计算量下降37.5%,mAP50提升3.2和3.1个百分点。在NVIDIA Jetson Xavier NX上,每秒传输帧数(FPS)从51增加到59,实时性有了明显的提升。 展开更多
关键词 目标检测 轻量化 特征融合 损失函数
下载PDF
改进YOLOv5s的钢轨表面缺陷检测算法
3
作者 李军 许炫皓 王耀弘 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第8期130-137,共8页
针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用... 针对钢轨多类别缺陷识别任务中样本不平衡、尺度差异大,提出一种改进YOLOv5s的钢轨表面缺陷检测算法。在骨干网络中嵌入全局注意力机制,增强网络对缺陷特征的提取能力;构建加权双向特征融合网络,减少缺陷目标特征信息的丢失;在颈部采用改进的卷积结构,降低模型复杂度,同时提升检测精度;最后引入WIoU损失函数提升低质量样本预测能力。该方法在2种不同类别的数据集中都具有较好的表现,在RailDefect公共数据集上,其平均精度均值(mAP)达到91.2%,较YOLOv5s网络提高了3.6%,准确率(precision)和召回率(recall)分别提高了3.3%和3.9%。该算法在保证较高检测精度的同时降低了模型复杂度,更适合部署于算力有限的移动端轨道检测设备中,具有一定的实用价值。 展开更多
关键词 钢轨多类别缺陷 YOLOv5s 注意力机制 加权双向特征融合网络 损失函数
下载PDF
基于双阶段特征解耦网络的单幅图像去雨方法
4
作者 汤红忠 熊珮全 +2 位作者 王蔚 王晒雅 陈磊 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第2期273-282,共10页
针对现有的单幅图像去雨方法无法有效地平衡背景图像细节恢复与有雨分量去除问题,提出一种基于双阶段特征解耦网络的单幅图像去雨方法,采用渐进式的学习方式从粗到细分阶段进行单幅图像去雨.首先构建压缩激励残差模块,实现背景图像与有... 针对现有的单幅图像去雨方法无法有效地平衡背景图像细节恢复与有雨分量去除问题,提出一种基于双阶段特征解耦网络的单幅图像去雨方法,采用渐进式的学习方式从粗到细分阶段进行单幅图像去雨.首先构建压缩激励残差模块,实现背景图像与有雨分量的初步分离;然后设计全局特征融合模块,其中特别引入特征解耦模块分离有雨分量和背景图像的特征,实现细粒度的图像去雨;最后利用重构损失、结构相似损失、边缘感知损失和纹理一致性损失构成的复合损失函数训练网络,实现高质量的无雨图像重构.实验结果表明,在Test100合成雨图数据集上,所提方法峰值信噪比为25.57dB,结构相似性为0.89;在100幅真实雨图上,所提方法的自然图像质量评估器为3.53,无参考图像空间质量评估器为20.16;在去雨后的RefineNet目标分割任务中,平均交并比为29.41%,平均像素精度为70.06%;视觉效果上,该方法能保留更多的背景图像特征,有效地辅助下游的目标分割任务的开展. 展开更多
关键词 特征解耦网络 压缩激励残差模块 全局特征融合模块 复合损失函数 单幅图像去雨
下载PDF
基于字符和词特征融合的恶意域名检测
5
作者 赵宏 申宋彦 +1 位作者 韩力毅 吴喜川 《计算机工程与设计》 北大核心 2024年第5期1549-1556,共8页
针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word ... 针对现有恶意域名检测方法对域名生成算法(domain generation algorithm, DGA)随机产生的恶意域名检测性能不高,且对由随机单词组成的恶意域名检测效果较差的问题,提出一种基于字符和词特征融合的恶意域名检测算法(cha-racter and word network, CWNet)。利用并行卷积神经网络分别提取域名中字符和词的特征;将两种特征进行拼接,构造成融合特征;利用Softmax函数实现合法域名与恶意域名的检测。实验结果表明,该算法可以提升对恶意域名的检测能力,对更具挑战性的恶意域名家族的检测准确率提升效果更为明显。 展开更多
关键词 恶意域名检测 域名生成算法 深度学习 卷积神经网络 特征融合 向量表示 损失函数
下载PDF
基于改进残差网络的运动目标模糊图像复原方法
6
作者 孙灵 《现代电子技术》 北大核心 2024年第15期86-90,共5页
传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运... 传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运动目标模糊图像,采用多损失函数融合方法改进传统残差块结构,构建编码器-解码器网络训练结构,训练损失函数,提升网络的特征学习能力。通过完成训练的网络,输出运动目标模糊图像复原结果。实验结果表明,该方法复原运动目标模糊图像的峰值信噪比高于30 dB,结构相似性高于0.9。 展开更多
关键词 改进残差网络 运动目标 多损失函数融合 模糊图像 编辑器-解码器网络 复原方法
下载PDF
多层特征融合与语义增强的盲图像质量评价
7
作者 赵文清 许丽娇 +1 位作者 陈昊阳 李梦伟 《智能系统学报》 CSCD 北大核心 2024年第1期132-141,共10页
针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信... 针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信息,进而指导失真图像到质量分数的映射过程;考虑预测分数和主观分数之间的相对排名关系,对L_(1)损失函数和三元组排名损失函数进行融合,构建新的损失函数L_(mix)。为了验证本文方法的有效性,在野生图像质量挑战数据集上进行了验证和对比实验,该算法的斯皮尔曼等级相关系数与皮尔逊线性相关系数指标相比原算法分别提升2.3%和2.3%;在康斯坦茨真实图像质量数据数据集和野生图像质量挑战数据集上进行了跨数据集实验,该算法在面对真实失真图像时表现出了良好的泛化性能。 展开更多
关键词 深度学习 图像质量 卷积神经网络 特征提取 通道注意力结构 多层次特征融合 扩张卷积 三元组损失函数
下载PDF
基于改进Faster R-CNN的变电站设备外部缺陷检测
8
作者 张铭泉 邢福德 刘冬 《智能系统学报》 CSCD 北大核心 2024年第2期290-298,共9页
针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-C... 针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-CNN(faster region-based convolutional network)算法,但其对小目标物体和设备渗漏油的检测精度仍有提升空间,为此设计一种基于Faster R-CNN的改进算法。改进算法通过对输入图像进行数据增强,在网络中添加SPP(spatial pyramid pooling)结构以及改进特征融合方式,对分类以及边界框回归损失函数进行改进的方式来提高缺陷的检测精度。与原Faster R-CNN算法进行对比,改进算法在变电站设备缺陷目标检测数据集的检测结果中AP(average precision)(0.5∶0.95)提高了2.7个百分点,AP(0.5)提高了4.3个百分点,对小目标物体的检测精度也提高了1.8个百分点,试验结果验证了该方法的有效性。 展开更多
关键词 变电站设备外部缺陷 深度学习 目标检测 卷积神经网络 Faster R-CNN 特征提取 特征融合金字塔结构 损失函数
下载PDF
改进YOLOv7的木材表面缺陷检测算法 被引量:1
9
作者 江兴旺 赵兴强 《计算机工程与应用》 CSCD 北大核心 2024年第7期175-182,共8页
优质木材深受人们喜爱,但木材存在多种缺陷导致优质木材产量少,木材利用率低。运用深度学习的目标检测算法可以实现木材表面缺陷的快速稳定检测,以此提高木材的优质化和利用率。针对目前木材表面缺陷目标小、密集和复杂等特点导致检测... 优质木材深受人们喜爱,但木材存在多种缺陷导致优质木材产量少,木材利用率低。运用深度学习的目标检测算法可以实现木材表面缺陷的快速稳定检测,以此提高木材的优质化和利用率。针对目前木材表面缺陷目标小、密集和复杂等特点导致检测精度较差的问题,提出了一种基于改进YOLOv7的木材表面缺陷检测模型YOLOv7-ESS。针对木材的裂缝缺陷存在极端长宽比例而影响检测效果的问题,嵌入注意力模块ECBAM,通过加强对极端长宽比例缺陷的注意力,提高模型的特征提取能力。针对在提取特征时木材表面小缺陷特征信息丢失严重的问题,引入浅层加权特征融合网络SFPN,以深层特征图作为输出,同时有效利用浅层特征信息,提高小缺陷的识别准确率。引入SIoU损失函数,提升模型收敛速度及模型精度。结果表明,YOLOv7-ESS模型平均检测精度为94.7%,较YOLOv7检测精度提高了11.2个百分点,满足木材生产加工时的缺陷检测要求。 展开更多
关键词 木材表面 缺陷检测 YOLOv7 特征融合 注意力机制 损失函数
下载PDF
复杂作业环境下安全帽实时检测算法研究
10
作者 胡启军 潘学鹏 +2 位作者 余洋 刘瑞 潘莉 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1904-1912,共9页
为解决建筑工地安全帽背景复杂时检测精度不高、安全帽目标太小不易检测等问题,以YOLOv5框架为基础,提出了一种复杂作业环境下安全帽实时检测算法。首先,在网络中添加坐标注意力机制模块,以抑制无效背景对目标的干扰并提高网络对目标特... 为解决建筑工地安全帽背景复杂时检测精度不高、安全帽目标太小不易检测等问题,以YOLOv5框架为基础,提出了一种复杂作业环境下安全帽实时检测算法。首先,在网络中添加坐标注意力机制模块,以抑制无效背景对目标的干扰并提高网络对目标特征的提取能力;其次,在特征融合层引入自适应空间特征融合模块,使网络能自动学习不同特征层的权重,从而增强特征融合能力;最后,采用缩放交并比损失替代完整交并比损失作为边界框损失函数,以解决预测框在回归时的随意匹配问题,进一步提高模型的检测精度并加速收敛速度。结果表明,相较于原始YOLOv5模型,改进后的网络精度提升了2.6百分点,平均精度均值提高了2.3百分点,达到了95.6%,有效提高了复杂环境下安全帽的检测能力。 展开更多
关键词 安全工程 安全帽识别 YOLOv5 坐标注意力 特征融合 损失函数
下载PDF
改进YOLOv7的视频监控小目标检测
11
作者 夏翔 朱明 《计算机系统应用》 2024年第7期52-62,共11页
小目标检测作为目标检测中一项极具挑战性的项目,广泛分布于日常生活中,在视频监控场景中,距离摄像头约20 m远处的行人人脸就可以被认为是小目标.由于人脸可能相互遮挡并容易受到噪声和天气光照条件的影响,现有的目标检测模型在这类小... 小目标检测作为目标检测中一项极具挑战性的项目,广泛分布于日常生活中,在视频监控场景中,距离摄像头约20 m远处的行人人脸就可以被认为是小目标.由于人脸可能相互遮挡并容易受到噪声和天气光照条件的影响,现有的目标检测模型在这类小目标上的性能劣于中大型目标.针对此类问题,本文提出了改进后的YOLOv7模型,添加了高分辨率检测头,并基于GhostNetV2对骨干网络进行了改造;同时基于BiFPN和SA注意力模块替换PANet结构,增强多尺度特征融合能力;结合Wasserstein距离改进了原来的CIoU损失函数,降低了小目标对锚框位置偏移的敏感性.本文在公开数据集VisDrone2019以及自制的视频监控数据集上进行了对比实验.实验表明,本文提出的改进方法mAP指标在VisDrone2019数据集上提高到了50.1%,在自制视频监控数据集上高于现有方法1.6个百分点,有效提高了小目标检测的能力,并在GTX1080Ti上达到了较好的实时性. 展开更多
关键词 小目标检测 注意力机制 特征融合 损失函数
下载PDF
基于切片推理的小目标检测技术研究
12
作者 刘玉雯 刘文逸 +3 位作者 唐云龙 彭沛 何维真 韩星烨 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期269-277,共9页
针对高分辨率图像中小目标识别精度低且漏检率高的问题,从模型训练和预测角度,包含特征融合、预测框定位损失函数和检测网络3个方面进行优化,提出一种基于切片推理的改进YOLOv5算法。将CAM模块添加到特征融合网络中,通过扩张卷积提升特... 针对高分辨率图像中小目标识别精度低且漏检率高的问题,从模型训练和预测角度,包含特征融合、预测框定位损失函数和检测网络3个方面进行优化,提出一种基于切片推理的改进YOLOv5算法。将CAM模块添加到特征融合网络中,通过扩张卷积提升特征感受野尺度,增强了小目标及其相邻像素的上下文学习效果;使用Focal_EIOU损失函数替换原CIOU损失函数,将预测框与真实框的宽高差异最小化,更加关注有效目标的预测结果,提升了预测框定位精度和损失函数的收敛速度;在检测网络中添加SAHI算法,利用切片思想放大局部特征并对切片结果分别进行预测,提升了图像局部特征的检出效果,降低了小目标的漏检率。经实验对比,本文中改进算法能够有效提取深层网络中的小目标特征,相比于原YOLOv5算法,边界框定位损失明显下降且收敛较快,小目标识别准确率提高了4.4%,小目标检出率增加为原来的2倍,能够有效应用于高分辨率图像的小目标检测任务。 展开更多
关键词 目标识别 小目标检测 特征融合 切片推理 损失函数
下载PDF
基于改进YOLO v8的煤中杂物检测研究
13
作者 王克凡 王羽玲 +1 位作者 童建良 杨建国 《中国煤炭》 北大核心 2024年第4期115-125,共11页
针对选煤厂毛煤中夹杂的铁丝、编织袋、木头、网片等杂物会对智能干选设备运行及后续生产环节造成严重影响的问题,提出一种基于改进YOLO v8的手选胶带杂物识别方法。引入全局注意力机制,增强图像跨维度特征交互;引入加权双向特征金字塔... 针对选煤厂毛煤中夹杂的铁丝、编织袋、木头、网片等杂物会对智能干选设备运行及后续生产环节造成严重影响的问题,提出一种基于改进YOLO v8的手选胶带杂物识别方法。引入全局注意力机制,增强图像跨维度特征交互;引入加权双向特征金字塔网络结构,通过自适应控制不同尺度特征图之间的融合,提高模型对杂物的多尺度检测能力。在此基础上,采用WIoU损失函数替换CIoU损失函数,改善模型训练过程中样本质量的平衡问题,以提高模型的性能。通过数据增强扩充煤中杂物数据集,依据实验验证改进YOLO v8的结果。实验结果表明,改进后的算法与原YOLO v8相比,对手选胶带煤中杂物的平均检测精度明显提高,为毛煤入选前的预先智能除杂奠定了基础。 展开更多
关键词 煤炭除杂 目标检测 特征融合 注意力机制 损失函数
下载PDF
多尺度特征融合的铁轨异物入侵检测研究
14
作者 王楠 侯涛 牛宏侠 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第9期139-153,共15页
针对铁路轨道异物检测中不同尺度异物目标的检测易受复杂环境的影响,导致出现检测精度低及检测速度慢等问题,提出一种多尺度特征融合的铁轨异物检测(RMF-YOLO)算法。首先,设计并引入改进的卷积注意力模块(ICBAM),结合YOLOv7特征提取网络... 针对铁路轨道异物检测中不同尺度异物目标的检测易受复杂环境的影响,导致出现检测精度低及检测速度慢等问题,提出一种多尺度特征融合的铁轨异物检测(RMF-YOLO)算法。首先,设计并引入改进的卷积注意力模块(ICBAM),结合YOLOv7特征提取网络,以增强复杂场景下的特征提取能力。其次,在所有高效层聚合网络模块中采用GhostConv替代普通卷积层,以降低计算复杂度,提高特征输出效率;设计一种改进的加权双向特征金字塔网络N-BiFPN结构,加强多尺度特征融合能力,平衡不同层级特征信息,提高多尺度检测能力。最后,为进一步提升检测精度,采用WIoU损失函数结合动态非单调聚集机制,有效应对低质量锚框产生的梯度,提高模型对不同尺度异物检测的整体性能。实验结果表明:在自制的铁轨异物数据集上,RMF-YOLO算法减少了原网络模型的参数量,有效提升了模型的检测精度与检测速度,改善了漏检与误检问题,平均精度提升了5.5%,检测速度提升了5.88%,计算量减少了12.25%,能满足铁轨入侵异物检测中对检测精度和实时性的需求。 展开更多
关键词 铁轨异物检测 特征融合 多尺度 YOLOv7 损失函数
下载PDF
反向加权融合多尺度特征的X射线图像违禁品检测
15
作者 马昌嵩 裴晓芳 +2 位作者 周磊 周进 杨继海 《国外电子测量技术》 2024年第4期170-180,共11页
针对现阶段违禁品检测方法存在的混叠效应以及在类内变化显著的场景下检测精度较低等问题,提出一种反向加权融合多尺度特征的X射线图像违禁品检测算法,通过反向自适应地引导融合多尺度上下文特征来实现准确的违禁品目标检测。首先,使用... 针对现阶段违禁品检测方法存在的混叠效应以及在类内变化显著的场景下检测精度较低等问题,提出一种反向加权融合多尺度特征的X射线图像违禁品检测算法,通过反向自适应地引导融合多尺度上下文特征来实现准确的违禁品目标检测。首先,使用多尺度场景感知模块获取从局部到全局的目标表征信息,帮助处理显著的类内变化。其次,利用反向加权融合结构采用特征引导加权的方式,高效融合蕴含丰富上下文特征的多级特征,缓解融合过程中易出现的混叠效应。最后,设计了一种Focal-SIOU损失函数,用于平衡不同质量违禁品目标预测框之间的贡献差异,并结合角度和边长损失进一步提升预测框的收敛速度和回归精度。本文方法在SIXray、OPIXray、PIDray等3个非常具有挑战性的基准数据集上进行了广泛的评测实验,平均精度均值(mAP)分别达到93.2%、90.7%和85.1%。实验结果充分表明,方法相比于最新方法性能更优,并且能够满足实时目标检测的实际应用需求。 展开更多
关键词 违禁品检测 多尺度融合 上下文特征 损失函数
下载PDF
面向无人机图像场景的小目标检测模型
16
作者 朱堃煌 孙博 毛国君 《计算机工程与应用》 CSCD 北大核心 2024年第15期243-251,共9页
无人机因其飞行高度和拍摄角度的独特性,采集的遥感图像中存在大量小目标。小目标物体像素小、语义信息少,容易受背景信息干扰和出现聚集遮挡,是当前检测模型性能不佳的主要原因之一。提出一种面向小目标的无人机图像目标检测模型UAIDet... 无人机因其飞行高度和拍摄角度的独特性,采集的遥感图像中存在大量小目标。小目标物体像素小、语义信息少,容易受背景信息干扰和出现聚集遮挡,是当前检测模型性能不佳的主要原因之一。提出一种面向小目标的无人机图像目标检测模型UAIDet(unmanned aerial vehicles images detector),从解决信息冲突和检测框回归难入手,提升模型的检测性能。其一,构建自适应的通道融合模块,在特征融合阶段动态学习通道权重以过滤不同尺度特征之间的信息冲突,抑制特征融合时的尺度不一致性,提高小目标物体的检测能力;其二,设计误差敏感定位损失函数,在小目标物体检测框的收敛阶段提出偏移敏感损失项以解决小目标对几何误差的敏感性,提高定位损失函数的鲁棒性,优化小目标物体的检测精度。在数据集Visdrone2022上对文章方法进行实验,mAP(means average precision)和AP50(average precision at IOU threshold 50%)分别达到了22.0%和37.1%,相较于基准模型分别提高3和4.7个百分点。TinyPerson数据集上的mAP和AP50为9.9%和29.1%,分别提高了4.29和4.2个百分点,证明UAIDet模型的有效性和鲁棒性。 展开更多
关键词 目标检测 无人机图像 小目标 特征融合 损失函数
下载PDF
Wear-YOLO:变电站电力人员安全装备检测方法研究
17
作者 王茹 刘大明 张健 《计算机工程与应用》 CSCD 北大核心 2024年第9期111-121,共11页
针对传统变电站电力人员的安全帽、绝缘手套、绝缘鞋等安全装备的目标检测算法精度低,泛化性差,尤其针对是否佩戴绝缘手套检测难的问题,提出了一种改进YOLOv8的变电站电力人员安全装备检测算法Wear-YOLO。为了更好地学习复杂场景的语境... 针对传统变电站电力人员的安全帽、绝缘手套、绝缘鞋等安全装备的目标检测算法精度低,泛化性差,尤其针对是否佩戴绝缘手套检测难的问题,提出了一种改进YOLOv8的变电站电力人员安全装备检测算法Wear-YOLO。为了更好地学习复杂场景的语境信息,将YOLOv8的Backbone部分的C2f(CSP bottleneck with 2 convolutions)模块替换为融合Transformer结构的MobileViTv3模块,捕获长距离依赖关系和上下文信息,并与局部信息相融合,提升模型在变电站场景中特征提取的能力。同时为优化小目标检测效果,引入小目标检测层以增强网络对浅层语义信息的提取,从而提升模型对于未佩戴绝缘手套小目标的检测精度。采用WIoUv3改进边界框回归损失函数,引入动态非单调聚焦机制使得模型更专注于普通质量的锚框,从而提高模型检测的准确率和对于复杂情况的适应能力。实验结果表明,平均检测精度92.1%,对安全帽的检测精度96.8%,对佩戴绝缘手套的检测精度92.1%,对未佩戴绝缘手套的检测精度81.6%,对绝缘鞋的检测精度93.0%,并且在与经典目标检测模型Faster R-CNN、SSD、RetinaNet、YOLOv5的对比实验中具有更好的检测精度和鲁棒性。 展开更多
关键词 安全装备检测 绝缘手套 YOLO 融合Transformer 损失函数
下载PDF
基于改进YOLOv7的无人机图像目标检测算法 被引量:1
18
作者 梁秀满 贾梓涵 +1 位作者 于海峰 刘振东 《无线电工程》 2024年第4期937-946,共10页
针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失... 针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失、提高小目标检测能力;提出多信息流融合注意力机制——Spatial and Channel Attention Mechanism(SCA),动态调整注意力对空间信息流和语义信息流的关注,获得更丰富的特征信息以提高捕获目标的能力;更换损失函数为SIoU,加快模型收敛速度。在公开数据集VisDrone2019上进行对比实验,改进后算法的mAP50值相比YOLOv7提高了4%,达到了52.4%,FPS为37,消融实验验证了每个模块均提升了检测精度。实验表明,改进后的算法能较好地检测无人机图像中的目标。 展开更多
关键词 无人机 小目标检测 多信息流融合注意力机制 YOLOv7 损失函数
下载PDF
基于改进ConvMixer和动态焦点损失的视听情感识别
19
作者 师硕 覃嘉俊 +1 位作者 于洋 郝小可 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2824-2835,共12页
视听双模态情感识别是情感计算领域的研究热点.目前情感识别方法存在无法同时提取视频局部和全局特征,多模态数据融合简单,损失函数在模型优化中无法关注错分样本等问题,导致情感识别结果精确度不高.本文提出一种基于改进的ConvMixer和... 视听双模态情感识别是情感计算领域的研究热点.目前情感识别方法存在无法同时提取视频局部和全局特征,多模态数据融合简单,损失函数在模型优化中无法关注错分样本等问题,导致情感识别结果精确度不高.本文提出一种基于改进的ConvMixer和动态权重焦点损失函数的视听情感识别方法.采用空间和时间邻接矩阵代替ConvMixer中的深度分离卷积,提取视频时域空域上的全局和局部特征.提出跨模态时间注意力模块,以对称结构捕捉模态间的时间相关性,提高特征融合效果.结合混淆矩阵计算具有动态权重的焦点损失函数,差异化地加大错分样本在损失中的占比,优化模型参数.在公开数据集上的实验结果表明,本文方法能提取到代表性特征,可有效优化网络结构,提高了情感识别的准确率. 展开更多
关键词 情感识别 ConvMixer 注意力机制 多模态特征融合 焦点损失函数
下载PDF
基于特征融合的低剂量CT图像降噪方法
20
作者 冉瑞生 张思文 +1 位作者 李进 房斌 《微电子学与计算机》 2024年第5期11-21,共11页
近年来低剂量CT(Low Dose CT,LDCT)被广泛应用于临床诊断中,但LDCT会产生不规则的噪声。已有的降噪方法往往缺乏对全局特征信息的考虑,以及不注重边缘特征信息和重建图像的视觉效果。为此,提出了一种基于特征融合的低剂量CT图像降噪方... 近年来低剂量CT(Low Dose CT,LDCT)被广泛应用于临床诊断中,但LDCT会产生不规则的噪声。已有的降噪方法往往缺乏对全局特征信息的考虑,以及不注重边缘特征信息和重建图像的视觉效果。为此,提出了一种基于特征融合的低剂量CT图像降噪方法。首先,利用Transformer优异的全局感受野提取图像的全局特征信息,并利用卷积神经网络(Convolutional Neural Network,CNN)良好的局部特征提取能力提取图像的局部特征信息。在Transformer模块中加入维度变换思想,以更好地抑制噪声;在CNN模块中使用稠密连接的方式将浅层网络的特征信息复用于深层网络中,以此保存更多的特征信息。其次,为了获取更加丰富的图像细节特征,使用了改进的索伯边缘增强算子来加强模型对边缘特征信息的提取能力。最后,将Transformer模块和CNN模块获取的特征信息进行融合并输出重建图像。此外,为了使降噪重建后的图像有更好的质量和视觉效果,设计了一个多尺度复合损失函数。实验表明:在AAPM-Mayo数据集的降噪实验中,与当前主流的LDCT图像降噪方法相比,本文方法取得了更好的降噪效果。 展开更多
关键词 图像降噪 低剂量CT 特征融合 TRANSFORMER CNN 边缘增强 损失函数
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部