In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and ...In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.展开更多
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorit...For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.展开更多
Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coeff...Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.展开更多
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
Based on the theory of fuzzy logic, the method of obfuscating coefficient and reliability to fuse the information of hand geometry and palm prints for identity discrimination is proposed. The experiment proves that th...Based on the theory of fuzzy logic, the method of obfuscating coefficient and reliability to fuse the information of hand geometry and palm prints for identity discrimination is proposed. The experiment proves that the method is useful and effective. Its identification rate is up to 90%, which is 20%-30% higher than that of using hand geometry or palm prints singly,thus it can be widely used in highly demanded security field, such as finance, entrance guard, etc.展开更多
Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety ...Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety of biological effects.Cerebral ischemia and reperfusion can activate STATs signaling pathway,but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging(DWI)in rats after cerebral ischemia/reperfusion.Here,we established a rat model of focal cerebral ischemia injury using the modified Longa method.DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient.STAT3 protein expression showed no significant change after reperfusion,but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours.Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area.These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.展开更多
The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature fie...The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature field, and the difficulty to collimate and locate by usual method. By improving the measurement accuracy of larger axis accessories, it is useful to raise axis and hole's industry produce level. Because of the influence of complex environment in locale and some influential factors which are hard excluded from the large diameter measurement with multi-rolling-wheels method, the measurement results may not support or even contradict each other. To the situation, this paper puts forward a mutual support deviation distinguish data fusion method, including mutual support deviation detection and weight data fusion. The mutual support deviation detection part can effectively remove or weaken the unexpected impact on the measurement results and the weight data fusion part can get more accurate estimate result to the detected data. So the method can further improve the reliability of measurement results and increase the accuracy of the measurement system. By using the weight data fusion based on the mutual support (DFMS) to the simulation and experiment data, both simulation results and experiment results show that the method can effectively distinguish the data influenced by unexpected impact and improve the stability and reliability of measurement results. The new provided mutual support deviation distinguish method can be used to single sensor measurement and multi-sensor measurement, and can be used as a reference in the data distinguish of other area. The DFMS is helpful to realize the diameter measurement expanded uncertainty in 5 ×10^-6D or even higher when the measured axis workpiece's diameter is 1-5 m ( 1 m ≤ D ≤5 m ).展开更多
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances...A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above.展开更多
It is a developing job to distinguish identifications with information fusion of fingerprints and palm prints. It is also a very effective way to resolve the problem of low identification rate and low stability of sin...It is a developing job to distinguish identifications with information fusion of fingerprints and palm prints. It is also a very effective way to resolve the problem of low identification rate and low stability of single biology characteristic identification. Based on the theory of fuzzy logic theory, we bring out the method of obfuscating weigh coefficient and reliability to fuse the information of fingerprints and palm prints to realize high identification rate. The experiment proves the feasibility and effectiveness of this method and the identification rate can be more than 90%, which contributes useful experience to the research of identification using biology characteristics.展开更多
基金supported by the National Natural Science Foundation of China(6110420961503126)
文摘In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).
基金supported by the National Natural Science Foundation of China(No.60874063)the Innovation Scientific Research Foundation for Graduate Students of Heilongjiang Province(No.YJSCX2008-018HLJ),and the Automatic Control Key Laboratory of Heilongjiang University
文摘For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.
文摘Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
文摘Based on the theory of fuzzy logic, the method of obfuscating coefficient and reliability to fuse the information of hand geometry and palm prints for identity discrimination is proposed. The experiment proves that the method is useful and effective. Its identification rate is up to 90%, which is 20%-30% higher than that of using hand geometry or palm prints singly,thus it can be widely used in highly demanded security field, such as finance, entrance guard, etc.
文摘Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety of biological effects.Cerebral ischemia and reperfusion can activate STATs signaling pathway,but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging(DWI)in rats after cerebral ischemia/reperfusion.Here,we established a rat model of focal cerebral ischemia injury using the modified Longa method.DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient.STAT3 protein expression showed no significant change after reperfusion,but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours.Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area.These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.
基金supported by Focus of the Funding Item of Metrology of Military Industry in National Defense of China in "Tenth-five-year" Project (Grant No. 60104208)
文摘The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature field, and the difficulty to collimate and locate by usual method. By improving the measurement accuracy of larger axis accessories, it is useful to raise axis and hole's industry produce level. Because of the influence of complex environment in locale and some influential factors which are hard excluded from the large diameter measurement with multi-rolling-wheels method, the measurement results may not support or even contradict each other. To the situation, this paper puts forward a mutual support deviation distinguish data fusion method, including mutual support deviation detection and weight data fusion. The mutual support deviation detection part can effectively remove or weaken the unexpected impact on the measurement results and the weight data fusion part can get more accurate estimate result to the detected data. So the method can further improve the reliability of measurement results and increase the accuracy of the measurement system. By using the weight data fusion based on the mutual support (DFMS) to the simulation and experiment data, both simulation results and experiment results show that the method can effectively distinguish the data influenced by unexpected impact and improve the stability and reliability of measurement results. The new provided mutual support deviation distinguish method can be used to single sensor measurement and multi-sensor measurement, and can be used as a reference in the data distinguish of other area. The DFMS is helpful to realize the diameter measurement expanded uncertainty in 5 ×10^-6D or even higher when the measured axis workpiece's diameter is 1-5 m ( 1 m ≤ D ≤5 m ).
基金Sponsored by the Teaching and Research Award Programfor Outstanding Young Teachers in High Education Institutions of MOE China(Grant No.ZDXM03006).
文摘A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above.
文摘It is a developing job to distinguish identifications with information fusion of fingerprints and palm prints. It is also a very effective way to resolve the problem of low identification rate and low stability of single biology characteristic identification. Based on the theory of fuzzy logic theory, we bring out the method of obfuscating weigh coefficient and reliability to fuse the information of fingerprints and palm prints to realize high identification rate. The experiment proves the feasibility and effectiveness of this method and the identification rate can be more than 90%, which contributes useful experience to the research of identification using biology characteristics.