期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
NEW VIEW OF CHARACTERISTIC ZONE CLASSIFICATION OF FUSION WELDING JOINT 被引量:1
1
作者 Zhang Hanqian Wang Bao +1 位作者 Wu Yu Lu Wenxiong (Taiyuan University of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第4期325-331,共17页
A new view of characterstic zone classification of fusion welding joint has been put for-ward on the base of a number of metallograplic observations and researches. TLe characteristiczones of the joint include (1) hom... A new view of characterstic zone classification of fusion welding joint has been put for-ward on the base of a number of metallograplic observations and researches. TLe characteristiczones of the joint include (1) homogenous mixture region (2)heterogerous mixture zone, (3)partically melting zone and (4) heat-affected zone. (1) and (2) consist of the weld metal. (2) and (3)compose the bond, the boundary betweer (2) and (3) is the fusion line Four kinds of characteristicappearences in the ' heterogenous mixture zone' are induced. The formation process of thecharcteristic zones is distussed in detail. The differences between authors' classification and W. F.Savage's one are compared, to hoping that the formation essence and composition feature of fusionwelding joint can be reasonably reflected. 展开更多
关键词 fusion welding joint Characterstic zore Terminology
全文增补中
Microstructure Characterization of the Fusion Zone of an Alloy 600-82 Weld Joint 被引量:3
2
作者 Cheng Ma Jinna Mei +3 位作者 Qunjia Peng Ping Deng En-Hou Han Wei Ke 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第10期1011-1017,共7页
Characterization of the microstructure of the fusion zone of an Alloy 600-82 weld joint was conducted, with focus on the weld residual strain distribution and the comparison of the microstructure of heat affected zone... Characterization of the microstructure of the fusion zone of an Alloy 600-82 weld joint was conducted, with focus on the weld residual strain distribution and the comparison of the microstructure of heat affected zone (HAZ) with that of cold worked alloy. Peak of the residual strain was observed to approach to the fusion boundary in HAZ while the strain increased from the top of the weld to the root. Strain distribution in the HAZ was found to be concentrated adjacent to grain boundaries (GBs), with a peak of approximately three times of that in grain. Further, triple junctions of the GB appear to cause a higher strain concentration than single GBs. The microstructure of HAZ consists of partially tangled dislocations, which is different from slip bands of high density dislocations in cold worked alloy. This may cause a relatively higher intergranular cracking resistance of HAZ due to the difficulty in transferring tangled dislocations to GB in HAZ under deformation. 展开更多
关键词 Microstructure fusion zone Weld joint Strain concentration Alloy 600
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部