Ecosystem services(ES)are highly impacted by human-induced land-use change.Progressive urbanization and agricultural land abandonment in Western Europe necessitate assessments of future land-change impacts on ES to en...Ecosystem services(ES)are highly impacted by human-induced land-use change.Progressive urbanization and agricultural land abandonment in Western Europe necessitate assessments of future land-change impacts on ES to ensure sustainable service management.The present study aims at evaluating future demand and supply of three key services(flood protection,nearby recreation and biodiversity)in the mountainous region of Vorarlberg,Austria.We mapped the ES for the referenced time step 2016 and two scenarios for 2050,assuming the continuation of current land-change trends and pressure on landscape development.Results for the referenced landscape in 2016 show the highest ES supply for intermediate levels,while ES supply was low in the lowlands and valley bottoms and in high-elevation areas.We found a high positive correlation of ES with the distribution of forested areas.In contrast,service demand was highest in lowelevation areas and decreased with increasing elevation.This indicates that densely settled and intensively used agricultural areas currently suffer from ES undersupply.The projected future development of land use showed an increase in both supply and demand of the selected ES.The overall service supply increased more than the respective demand due to some reforestation of open land.As forests were found to be important synergistic areas for overall service provision,we expect decreasing demand on related services.Locally,demand was found to exceed the supply of ES,especially in the densely populated Rhine valley-requiring further policy interventions.Such ES-related information may contribute to regional policy making and ensure the long-term provision of ESs for future generations.展开更多
Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present an...Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.展开更多
As important freshwater resources in alpine basins,glaciers and snow cover tend to decline due to climate warming,thus affecting the amount of water available downstream and even regional economic development.However,...As important freshwater resources in alpine basins,glaciers and snow cover tend to decline due to climate warming,thus affecting the amount of water available downstream and even regional economic development.However,impact assessments of the economic losses caused by reductions in freshwater supply are quite limited.This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios(RCP2.6(RCP,Representative Concentration Pathway),RCP4.5,and RCP8.5)by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial,agricultural,service,and domestic water uses combined with the present value method for the 2030 s,2050 s,2070 s,and 2090 s.The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6%and 74.5%under the RCP4.5 and RCP8.5 scenarios by the 2090 s relative to the baseline period(1980-2010),respectively.Compared to the RCP2.6 scenario,the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×10^(6) and 537.20×10^(6) CNY in the 2050 s and 2090 s,respectively,and the cumulative economic loss value for 2099 is approximately 2124.00×10^(6) CNY.We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses,respectively.The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater.These findings highlight the need for climate mitigation actions,industrial transformation,and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future.展开更多
In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environm...In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode.展开更多
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R...Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.展开更多
[ Objective] The research aimed to study climate suitability of S. superba in subtropical zone of China under future climate scenario and response of its regional distribution on climate change. [ Metbed] Based on cli...[ Objective] The research aimed to study climate suitability of S. superba in subtropical zone of China under future climate scenario and response of its regional distribution on climate change. [ Metbed] Based on climate- vegetation related Kira model, Holdridge model and ecological suitability theory, climate suitability model of S. superba was established by using fuzzy mathematics. Based on the daily meteorological data at 246 stations of the subtropical zone from 1960 to 2005, by using spatial interpolation method, suitability of S. superba on temperature, precipitation, po- tential evapotranspiration rate was analyzed. According to Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Sce- nario (SRES), future scenario simulation result was used. Under IPCC A2 scenario, climate suitability of S. superba and its change were studied in subtropical zone of China under future climate scenario. Climate suitability of S. superba in future was classified. [ Result] Under future climate scenario, climate suitability of S. superba was stronger in most of areas in Hunan, north Guangdong, northeast Guangxi and east coast of Zhe- jiang. It was suitable for growth of S. superba in central Guangxi, east Guizhou, central Jiangxi and Fuzhou. Growth suitability of S. superba was still lower in the north of Gongshan - Weixi - Lijiang - Yuanjiang - Huize - Leibo - Emei - Neijiang - Nanchong - Bazhong - Zhongxiang - zaoyang - Xinyang -Lu'an -Chuzhou -Gaoyou -Taitong. Climate suitability in west Yunnan and Sichuan had big change. Future climate suitability change of S. superba was greatly affected by temperature and potential evapotranspiration rate. [ Conclusion] Future climate suitability decreased toward west and north from Hunan. The climate suitability had a decline trend as time went by under future climate scenario. The research provided theoretical basis for studying geographic distribution of the vegetation population.展开更多
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil cons...As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield.展开更多
The changing energy-chemistry nexus is discussed in this perspective paper about the future of sustainable energy and chemical production to identify the priorities and open issues on which focus research and developm...The changing energy-chemistry nexus is discussed in this perspective paper about the future of sustainable energy and chemical production to identify the priorities and open issues on which focus research and development. Topics discussed regard (i) the new sustainable energy scenario, (ii) the role of energy storage (from smart grids to chemical storage of energy), (iii) the outlooks and role of solar (bio)refineries and solar fuels, (iv) how to integrate hio- and solar-refineries to move to new economy, (v) the role of methanol at the crossover of new energy-chemistry nexus, (vi) the role of chemistry in this new scenario, (vii) the role of nanomaterials for a sustainable energy, (viii) the use of nanocarbons to design advanced energy conversion and storage devices, and (ix) possibilities and routes to exploit solar energy and methane (shale gas). The contribution provides a glimpse of the emerging directions and routes with some elements about their possible role in the future scenario, but does not orovide a detailed analysis of the state of the art in these directions展开更多
This paper analyses the climate projections over the Koshi river basin obtained by applying the delta method to eight CMIP5 GCMs for the RCP4.5 and RCP8.5 scenarios. The GCMs were selected to cover the full envelope o...This paper analyses the climate projections over the Koshi river basin obtained by applying the delta method to eight CMIP5 GCMs for the RCP4.5 and RCP8.5 scenarios. The GCMs were selected to cover the full envelope of possible future ranges from dry and cold to wet and warm projections. The selected coarse resolution GCM outputs were statistically downscaled to the resolution of the historical climate datasets. The scenarios were developed based on the anomaly between the present reference period (1961-1990) and the future period (2021-2050) to generate transient climate change scenarios for the eight GCMs. The analyses were carried out for the whole basin and three physiographic zones: the trans-Himalaya, high-Himalaya and middle mountains, and southern plains. Future projections show a 14% increase in rainfall during the summer monsoon season by 2050. The increase in rainfall is higher over the mountains than the plains. The meagre amount of rainfall in the winter season is projected to further decrease over both the mountain and southern plains areas of the basin for both RCPs. The basin is likely to experience warming throughout the year, although the increase in winter is likely to be higher. The highest increase in temperature is projected to be over the high Himalayan and middle mountain area, with lower increases over the trans-Himalayan and southern plains areas.展开更多
This paper shows prospective methodology as a tool to generate strategic knowledge for designing sustainable futures. The strategic prospective is a social science discipline dedicated to explore the future. Based on ...This paper shows prospective methodology as a tool to generate strategic knowledge for designing sustainable futures. The strategic prospective is a social science discipline dedicated to explore the future. Based on qualitative methods with participative experts and stakeholders, the strategic prospective allows designing different future scenarios and planning the transformation of a current situation into a desired future. To design sustainable futures, this paper proposes a four-stage methodology: understanding the context; strategy visualization; design of alternative scenarios and definition of desired future; and planning its construction. This methodology makes evident the possibility of seeking alternative scenarios for a sustainable future in different scopes, particularly, in two prospective applications: biodiversity conservation and water treatment. The outcomes of the application have allowed proposing strategies and policies for the management of environmental goods, such as environmental services and water reuse, with a long-time outlook based on a collective desired future.展开更多
The purpose of this paper is to examine present librarian skills in academic libraries and to propose possible directions of future libraries on skill requirements. This study provides a valuable methodology to unders...The purpose of this paper is to examine present librarian skills in academic libraries and to propose possible directions of future libraries on skill requirements. This study provides a valuable methodology to understand the current demands of employers for library staff. It also begins to highlight trends in how the skill set and outlook for future employees are currently being viewed. There has been a combination of these understandings with the scenario planning technique to draw threads anticipating skill requirements in three to five years. These approaches create a powerful analysis. An examination of recent library position advertisements and job descriptions in five countries and regions showed broad communication and technology skills required in academic libraries. The key terms of skills were ranked according to the frequencies used in the advertisements and descriptions. Original research based on data from the United States, Australia, the United Kingdom, New Zealand and Hong Kong, SAR, China. The results are harmonized with predicted future trends from scenario planning exercises.展开更多
基于CMIP6未来情景下的气候变化通过耦合FLUS模型,运用InVEST模型、CASA模型分析研究区的水源涵养、固碳释氧、土壤保持价值时空变化趋势,并利用R语言、GeoDa模型对研究区生态系统服务价值进行空间异质性分析。结果表明:在SSP245、SSP58...基于CMIP6未来情景下的气候变化通过耦合FLUS模型,运用InVEST模型、CASA模型分析研究区的水源涵养、固碳释氧、土壤保持价值时空变化趋势,并利用R语言、GeoDa模型对研究区生态系统服务价值进行空间异质性分析。结果表明:在SSP245、SSP585情景下单位面积水源涵养价值分别为17.34万元/km^(2)、14.28万元/km^(2);单位面积固碳释氧价值分别为107.13万元/km^(2)、101.75万元/km^(2);单位面积土壤保持价值分别为40.18万元/km^(2)、44.61万元/km^(2)。本研究结论:在未来情景下,生态系统服务价值总体呈增加趋势,SSP245情景下生态系统服务价值增加幅度更大;全局Moran s I指数整体呈波动增加趋势,其中土壤保持、水源涵养功能在空间上具有较高聚集性,固碳释氧功能聚集性相对较差,研究区北部生态系统服务价值聚集性更高;研究区内生态系统服务价值均呈协同关系,未来情景下整体协同值呈增加趋势。厘清生态子系统之间的依赖关系,形成更完善的代谢循环,对于生态系统的稳定性以及可持续发展具有重要意义。展开更多
基金the HiFlow-CMA project conducted by alpS and WSL, funded by the Austrian Climate and Energy Fund (ACRP 8th call)
文摘Ecosystem services(ES)are highly impacted by human-induced land-use change.Progressive urbanization and agricultural land abandonment in Western Europe necessitate assessments of future land-change impacts on ES to ensure sustainable service management.The present study aims at evaluating future demand and supply of three key services(flood protection,nearby recreation and biodiversity)in the mountainous region of Vorarlberg,Austria.We mapped the ES for the referenced time step 2016 and two scenarios for 2050,assuming the continuation of current land-change trends and pressure on landscape development.Results for the referenced landscape in 2016 show the highest ES supply for intermediate levels,while ES supply was low in the lowlands and valley bottoms and in high-elevation areas.We found a high positive correlation of ES with the distribution of forested areas.In contrast,service demand was highest in lowelevation areas and decreased with increasing elevation.This indicates that densely settled and intensively used agricultural areas currently suffer from ES undersupply.The projected future development of land use showed an increase in both supply and demand of the selected ES.The overall service supply increased more than the respective demand due to some reforestation of open land.As forests were found to be important synergistic areas for overall service provision,we expect decreasing demand on related services.Locally,demand was found to exceed the supply of ES,especially in the densely populated Rhine valley-requiring further policy interventions.Such ES-related information may contribute to regional policy making and ensure the long-term provision of ESs for future generations.
基金Under the auspices of National Natural Science Foundation of China(No.42276234)National Social Science Foundation Major Project of China(No.23&ZD105)+1 种基金the Open Fund of the Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources of China(No.2023CZEPK04)the Science and Technology Major Project of Ningbo(No.2021Z181)。
文摘Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.
基金financially supported by the National Natural Science Foundation of China(41690141)the National Key Research and Development Program of China(2019YFC1510500)。
文摘As important freshwater resources in alpine basins,glaciers and snow cover tend to decline due to climate warming,thus affecting the amount of water available downstream and even regional economic development.However,impact assessments of the economic losses caused by reductions in freshwater supply are quite limited.This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios(RCP2.6(RCP,Representative Concentration Pathway),RCP4.5,and RCP8.5)by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial,agricultural,service,and domestic water uses combined with the present value method for the 2030 s,2050 s,2070 s,and 2090 s.The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6%and 74.5%under the RCP4.5 and RCP8.5 scenarios by the 2090 s relative to the baseline period(1980-2010),respectively.Compared to the RCP2.6 scenario,the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×10^(6) and 537.20×10^(6) CNY in the 2050 s and 2090 s,respectively,and the cumulative economic loss value for 2099 is approximately 2124.00×10^(6) CNY.We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses,respectively.The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater.These findings highlight the need for climate mitigation actions,industrial transformation,and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future.
基金supported by the Key R&D Project of Shaanxi Province,China(2020ZDLNY07-06)the Science and Technology Program of Shaanxi Academy of Sciences(2022k-11).
文摘In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode.
基金Under the auspices of the National Natural Science Foundation of China(No.41971219,41571168)Natural Science Foundation of Hunan Province(No.2020JJ4372)Philosophy and Social Science Fund Project of Hunan Province(No.18ZDB015)。
文摘Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.
文摘[ Objective] The research aimed to study climate suitability of S. superba in subtropical zone of China under future climate scenario and response of its regional distribution on climate change. [ Metbed] Based on climate- vegetation related Kira model, Holdridge model and ecological suitability theory, climate suitability model of S. superba was established by using fuzzy mathematics. Based on the daily meteorological data at 246 stations of the subtropical zone from 1960 to 2005, by using spatial interpolation method, suitability of S. superba on temperature, precipitation, po- tential evapotranspiration rate was analyzed. According to Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Sce- nario (SRES), future scenario simulation result was used. Under IPCC A2 scenario, climate suitability of S. superba and its change were studied in subtropical zone of China under future climate scenario. Climate suitability of S. superba in future was classified. [ Result] Under future climate scenario, climate suitability of S. superba was stronger in most of areas in Hunan, north Guangdong, northeast Guangxi and east coast of Zhe- jiang. It was suitable for growth of S. superba in central Guangxi, east Guizhou, central Jiangxi and Fuzhou. Growth suitability of S. superba was still lower in the north of Gongshan - Weixi - Lijiang - Yuanjiang - Huize - Leibo - Emei - Neijiang - Nanchong - Bazhong - Zhongxiang - zaoyang - Xinyang -Lu'an -Chuzhou -Gaoyou -Taitong. Climate suitability in west Yunnan and Sichuan had big change. Future climate suitability change of S. superba was greatly affected by temperature and potential evapotranspiration rate. [ Conclusion] Future climate suitability decreased toward west and north from Hunan. The climate suitability had a decline trend as time went by under future climate scenario. The research provided theoretical basis for studying geographic distribution of the vegetation population.
基金financial support from the Ministry of Water Resources special funds for scientific research (Grant No. 20131037)National Natural Science Foundation of China (Grant No. 41001018)One Hundred Young Persons Project of Institute of Mountain Hazards and Environment (Grant No. SDSQB-2010-02)
文摘As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield.
基金the PRIN10-11 projects "Mechanisms of activation of CO2for the design of new materials for energy and resource efficiency" and "Innovative processes for the conversion of algal biomass for the production of jet fuel and green diesel" for the financial support
文摘The changing energy-chemistry nexus is discussed in this perspective paper about the future of sustainable energy and chemical production to identify the priorities and open issues on which focus research and development. Topics discussed regard (i) the new sustainable energy scenario, (ii) the role of energy storage (from smart grids to chemical storage of energy), (iii) the outlooks and role of solar (bio)refineries and solar fuels, (iv) how to integrate hio- and solar-refineries to move to new economy, (v) the role of methanol at the crossover of new energy-chemistry nexus, (vi) the role of chemistry in this new scenario, (vii) the role of nanomaterials for a sustainable energy, (viii) the use of nanocarbons to design advanced energy conversion and storage devices, and (ix) possibilities and routes to exploit solar energy and methane (shale gas). The contribution provides a glimpse of the emerging directions and routes with some elements about their possible role in the future scenario, but does not orovide a detailed analysis of the state of the art in these directions
文摘This paper analyses the climate projections over the Koshi river basin obtained by applying the delta method to eight CMIP5 GCMs for the RCP4.5 and RCP8.5 scenarios. The GCMs were selected to cover the full envelope of possible future ranges from dry and cold to wet and warm projections. The selected coarse resolution GCM outputs were statistically downscaled to the resolution of the historical climate datasets. The scenarios were developed based on the anomaly between the present reference period (1961-1990) and the future period (2021-2050) to generate transient climate change scenarios for the eight GCMs. The analyses were carried out for the whole basin and three physiographic zones: the trans-Himalaya, high-Himalaya and middle mountains, and southern plains. Future projections show a 14% increase in rainfall during the summer monsoon season by 2050. The increase in rainfall is higher over the mountains than the plains. The meagre amount of rainfall in the winter season is projected to further decrease over both the mountain and southern plains areas of the basin for both RCPs. The basin is likely to experience warming throughout the year, although the increase in winter is likely to be higher. The highest increase in temperature is projected to be over the high Himalayan and middle mountain area, with lower increases over the trans-Himalayan and southern plains areas.
文摘This paper shows prospective methodology as a tool to generate strategic knowledge for designing sustainable futures. The strategic prospective is a social science discipline dedicated to explore the future. Based on qualitative methods with participative experts and stakeholders, the strategic prospective allows designing different future scenarios and planning the transformation of a current situation into a desired future. To design sustainable futures, this paper proposes a four-stage methodology: understanding the context; strategy visualization; design of alternative scenarios and definition of desired future; and planning its construction. This methodology makes evident the possibility of seeking alternative scenarios for a sustainable future in different scopes, particularly, in two prospective applications: biodiversity conservation and water treatment. The outcomes of the application have allowed proposing strategies and policies for the management of environmental goods, such as environmental services and water reuse, with a long-time outlook based on a collective desired future.
文摘The purpose of this paper is to examine present librarian skills in academic libraries and to propose possible directions of future libraries on skill requirements. This study provides a valuable methodology to understand the current demands of employers for library staff. It also begins to highlight trends in how the skill set and outlook for future employees are currently being viewed. There has been a combination of these understandings with the scenario planning technique to draw threads anticipating skill requirements in three to five years. These approaches create a powerful analysis. An examination of recent library position advertisements and job descriptions in five countries and regions showed broad communication and technology skills required in academic libraries. The key terms of skills were ranked according to the frequencies used in the advertisements and descriptions. Original research based on data from the United States, Australia, the United Kingdom, New Zealand and Hong Kong, SAR, China. The results are harmonized with predicted future trends from scenario planning exercises.
文摘基于CMIP6未来情景下的气候变化通过耦合FLUS模型,运用InVEST模型、CASA模型分析研究区的水源涵养、固碳释氧、土壤保持价值时空变化趋势,并利用R语言、GeoDa模型对研究区生态系统服务价值进行空间异质性分析。结果表明:在SSP245、SSP585情景下单位面积水源涵养价值分别为17.34万元/km^(2)、14.28万元/km^(2);单位面积固碳释氧价值分别为107.13万元/km^(2)、101.75万元/km^(2);单位面积土壤保持价值分别为40.18万元/km^(2)、44.61万元/km^(2)。本研究结论:在未来情景下,生态系统服务价值总体呈增加趋势,SSP245情景下生态系统服务价值增加幅度更大;全局Moran s I指数整体呈波动增加趋势,其中土壤保持、水源涵养功能在空间上具有较高聚集性,固碳释氧功能聚集性相对较差,研究区北部生态系统服务价值聚集性更高;研究区内生态系统服务价值均呈协同关系,未来情景下整体协同值呈增加趋势。厘清生态子系统之间的依赖关系,形成更完善的代谢循环,对于生态系统的稳定性以及可持续发展具有重要意义。