期刊文献+
共找到3,097篇文章
< 1 2 155 >
每页显示 20 50 100
基于优化模糊C-means算法的不平衡大数据分类研究
1
作者 卓柳俊 曾心怡 《信息技术》 2024年第10期14-21,29,共9页
针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的... 针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的处理方式,定义不平衡阈向量,从而完善整个分类流程,完成基于优化模糊C-means算法的不平衡大数据分类方法的设计。实验结果表明,上述分类方法的应用,可将正例信息、负例信息的取样长度区间完全分离开来,能有效解决因不平衡大数据分类不精准造成的信息样本混淆的问题,符合实际应用需求。 展开更多
关键词 优化模糊c-means算法 不平衡大数据 交叉算子 卡方检验 压缩模糊近邻值
下载PDF
基于GWO-FCM的输油泵故障诊断模型自学习框架
2
作者 郭俊霞 谢自力 +2 位作者 毛申申 魏聪聪 邢健 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期79-86,共8页
随着输油泵场站无人化建设的发展,企业对输油泵故障诊断技术的要求也越来越高。目前,被广泛使用的利用机器学习算法进行输油泵故障诊断的方法都只能针对模型训练集中已包含的几类故障进行诊断,在企业的实际使用中,仍会出现其他不包含在... 随着输油泵场站无人化建设的发展,企业对输油泵故障诊断技术的要求也越来越高。目前,被广泛使用的利用机器学习算法进行输油泵故障诊断的方法都只能针对模型训练集中已包含的几类故障进行诊断,在企业的实际使用中,仍会出现其他不包含在训练集中的故障而不能被正确自动识别、诊断。针对上述问题,设计了一种输油泵故障诊断模型自学习框架,通过信号处理技术结合深度学习提取深层故障特征,提高工业现场数据的可分性;通过模糊C均值聚类结合相似度度量判别已知故障和未知故障,对出现的未知故障模式进行识别和记录;利用频繁出现的未知故障数据重训练模型,在原有诊断功能的基础上提高对未知故障的识别、诊断及学习能力。为验证方法的有效性,使用工业现场采集的输油泵数据进行实验,结果表明,现有诊断方法所提出的输油泵故障诊断模型自学习框架能够实现对未知故障的准确识别。 展开更多
关键词 输油泵 故障诊断 自学习 模糊c均值聚类
下载PDF
基于LOF-FCM算法的船舶航行数据识别
3
作者 崔秀芳 林浩涛 +1 位作者 安楠楠 王认认 《船舶工程》 CSCD 北大核心 2024年第S01期488-493,499,共7页
针对传统船舶自动识别系统数据在清洗异常数据和提取停留数据时分别采用不同的识别方式、类型判断阈值需要人为设定、识别效率不佳的局限性,首次提出了一种船舶航行轨迹中停留及异常数据的一体化检测方法。通过分析航行路线的3种数据(... 针对传统船舶自动识别系统数据在清洗异常数据和提取停留数据时分别采用不同的识别方式、类型判断阈值需要人为设定、识别效率不佳的局限性,首次提出了一种船舶航行轨迹中停留及异常数据的一体化检测方法。通过分析航行路线的3种数据(停留、异常和航行)异常因子特征,提出基于LOF-FCM的船舶航行数据、停留数据和异常数据一体化检测算法。实验对3类数据进行了识别,模型识别准确率达到了92.69%,有效提高了异常、停留、航行数据的识别能力。结果表明所提方法可一次性实现AIS数据中3种数据的检测,能高效分离出正常船舶航行数据,具有良好的工程应用价值。 展开更多
关键词 数据清洗 异常数据辨识 自动识别系统(AIS) 模糊c均值(fcm)
下载PDF
基于改进FCM的冲压件缺陷图像分割算法
4
作者 张玉杰 高晗 《计算机工程》 CAS CSCD 北大核心 2024年第10期342-351,共10页
在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对... 在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对上述问题,提出一种改进的FCM算法。采用内核诱导距离中的简单两项代替传统的欧氏距离,将原有的空间像素映射到高维特征空间,提高线性可分概率和计算速度;利用图像像素之间的空间相关性,通过引入改进的马尔可夫随机场对FCM目标函数进行修正,提高算法的抗噪能力以及分割精度;采用秃鹰搜索(BES)算法确定FCM的初始聚类中心,提高算法的收敛速度,同时避免算法陷入局部极值的情况。为验证改进FCM算法的性能,选取划分熵、划分系数、Xie_Beni系数以及迭代次数作为评价指标,并与近年来先进的图像分割算法进行对比。实验结果表明,改进FCM算法具有更好的抗噪能力,能得到更好的缺陷分割效果,对工业生产中的冲压件缺陷检测有一定的应用价值。 展开更多
关键词 模糊c均值聚类 工业应用 冲压件缺陷 内核诱导距离 马尔可夫随机场 秃鹰搜索算法
下载PDF
基于FCM及快速迭代收缩阈值算法的平面ECT图像重建
5
作者 张立峰 唐志浩 《计量学报》 CSCD 北大核心 2024年第6期899-906,共8页
为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离... 为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离散小波基(DWT)对灰度值进行稀疏表示,并建立L1正则化模型,采用FISTA进行求解,以实现图像重建;最后将FCM处理后的电容值分别用于Landweber算法、Tikhonov算法进行重建对比。仿真与实验结果表明,该算法重建图像的平均相对误差约为0.0527,平均相关系数约为0.9422,均优于其它算法,且重建图像伪影较少,更接近真实情况;因此,所提算法具有更好的重建效果。。 展开更多
关键词 电容层析成像 平面阵列电容 图像重建 模糊c均值聚类 快速迭代收缩阈值算法 缺陷检测
下载PDF
基于FCM和EO-SVM水轮机尾水管压力脉动特征识别 被引量:1
6
作者 刘茜媛 王利英 +1 位作者 张路遥 曹庆皎 《水电能源科学》 北大核心 2024年第1期162-165,共4页
为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾... 为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾水管压力脉动特征识别中的应用。然后采用模糊C均值聚类算法将待分类的压力脉动特征进行初始聚类,将其分为四类,并依据聚类结果选择最靠近每类中心的样本作为EO-SVM模型的训练样本。将SVM和EO-SVM两种模型的识别分类结果进行比较,验证了所提EO-SVM模型的有效性。 展开更多
关键词 压力脉动 小波包分析 模糊c均值聚类 平衡优化器算法 支持向量机
下载PDF
基于FCM-LSTM的光热发电出力短期预测 被引量:1
7
作者 刘振路 郭军红 +2 位作者 李薇 贾宏涛 陈卓 《工程科学学报》 EI CSCD 北大核心 2024年第1期178-186,共9页
对光热电站的出力进行短期预测,可以有效应对太阳能随机性和波动性带来的影响,为电网调度做好准备.该文以青海某光热电站为例,首先使用模糊C均值聚类算法对预处理后的实验数据进行分类,然后通过分析不同聚类类型下出力和气象数据中各因... 对光热电站的出力进行短期预测,可以有效应对太阳能随机性和波动性带来的影响,为电网调度做好准备.该文以青海某光热电站为例,首先使用模糊C均值聚类算法对预处理后的实验数据进行分类,然后通过分析不同聚类类型下出力和气象数据中各因子间的关联程度,充分挖掘出数据间的关系,确定不同类型预测模型的输入变量,进而构建出不同类别下的长短期记忆神经网络预测模型.结果表明,与传统长短期记忆神经网络模型、BP神经网络模型、支持向量机模型和随机森林模型的预测结果相比,基于模糊C均值聚类的长短期记忆神经网络预测模型效果良好,大幅减少了预测误差,验证了该预测模型的有效性. 展开更多
关键词 光热电站 气象因素 短期出力预测 长短期记忆神经网络 模糊c均值聚类
下载PDF
结合k-means的自动FCM图像分割方法 被引量:8
8
作者 刘万军 赵永刚 闵亮 《计算机工程与应用》 CSCD 北大核心 2015年第16期199-203,238,共6页
针对图像分割中模糊C均值算法(FCM)无法自动确定聚类中心,不考虑像素邻域信息的问题,提出一种结合k-means的自动FCM图像分割方法。该方法先由图像的灰度直方图确定聚类数目,使用一种改进的快速FCM方法产生初始聚类中心。即通过一步k-me... 针对图像分割中模糊C均值算法(FCM)无法自动确定聚类中心,不考虑像素邻域信息的问题,提出一种结合k-means的自动FCM图像分割方法。该方法先由图像的灰度直方图确定聚类数目,使用一种改进的快速FCM方法产生初始聚类中心。即通过一步k-means算法对大隶属度灰度更新模糊聚类中心,同时仅对小隶属度灰度使用快速FCM方法进行隶属度更新,迭代后得到初始聚类中心。利用改进隶属度的FCM算法进行最终聚类。实验表明,该方法获取初始聚类中心接近最终值,加速图像分割,并对噪声具有一定的鲁棒性。 展开更多
关键词 K均值 模糊c均值 图像分割 邻域信息
下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
9
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
下载PDF
一种改进的 Fuzzy c-means 聚类算法 被引量:4
10
作者 胡钟山 丁震 +2 位作者 杨静宇 唐振民 邬永革 《南京理工大学学报》 EI CAS CSCD 1997年第4期337-340,共4页
该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且... 该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FCM空间复杂性的关系。最后数值实验证实了结论。 展开更多
关键词 模糊聚类 模式识别 聚类分析 Mfcm
下载PDF
基于MS-FCM算法的船体板熔池图像处理技术
11
作者 徐远钊 罗玖田 +3 位作者 方乃文 冯志强 武鹏博 黎泉 《焊接学报》 EI CAS CSCD 北大核心 2024年第3期82-90,I0007,I0008,共11页
熔池的图像处理与特征提取技术是船舶熔化极气体保护焊(gas metal arc welding, GMAW)智能化焊接质量监控的重要内容,针对船体板GMAW焊接过程中的烟雾大、飞溅多等不稳定特性导致熔池图像采集模糊、边缘提取困难等问题,提出一种基于均... 熔池的图像处理与特征提取技术是船舶熔化极气体保护焊(gas metal arc welding, GMAW)智能化焊接质量监控的重要内容,针对船体板GMAW焊接过程中的烟雾大、飞溅多等不稳定特性导致熔池图像采集模糊、边缘提取困难等问题,提出一种基于均值漂移(mean shift, MS)优化模糊C均值聚类(fuzzy c-means, FCM)的图像处理算法.在优化设计焊接动态视觉传感系统中,以最大化保证图像信息采集清晰度的基础上,利用MS算法获取超像素图像以解决FCM算法对噪声的敏感性,同时在FCM算法上引入加权邻域窗口,以增强MS-FCM算法的鲁棒性,来克服烟雾、飞溅、弧光等噪声影响,进而完成图像分割与边缘提取.最后,设计出关于FCM、空间约束模糊C均值聚类(fuzzy c-means with spatial constraints, FCM_S)、加强型模糊聚类(enhanced fuzzy c-means, ENFCM)和模糊局部信息C均值聚类(fuzzy local information c-means clustering, FLICM)算法的4种不同图像处理方法,并与MSFCM优化模型进行边缘分割效果对比,获取几种方法所提取的熔宽,验证熔池几何特征的提取精度.结果表明,MS-FCM算法在船舶焊接熔池图像处理方面能有效抑制噪声干扰,平滑信息,达到较高的提取精度. 展开更多
关键词 模糊c均值聚类 均值漂移 图像分割 船体板 熔化极气体保护焊
下载PDF
Fuzzy C-Means算法中隶属度信息在特征空间的分布特性分析及改进方法 被引量:2
12
作者 胡世英 周源华 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1999年第1期67-72,共6页
首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明... 首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明这两种方法均起到了较好的效果. 展开更多
关键词 fuzzy 隶属度 选择注意性参数 置信度 fcm算法
下载PDF
基于FCM和DE-GPR的指纹库构建方法
13
作者 郑沛 张爱军 《电子设计工程》 2024年第23期51-56,共6页
针对室内定位中指纹库构建存在人力成本高、构建效率低的问题,提出一种基于模糊均值聚类(FCM)和差分进化算法(DE)优化高斯过程回归(GPR)的指纹库构建方法。FCM-DE-GPR算法通过模糊均值聚类和隶属度阈值划分指纹库局部模型,以挖掘无线信... 针对室内定位中指纹库构建存在人力成本高、构建效率低的问题,提出一种基于模糊均值聚类(FCM)和差分进化算法(DE)优化高斯过程回归(GPR)的指纹库构建方法。FCM-DE-GPR算法通过模糊均值聚类和隶属度阈值划分指纹库局部模型,以挖掘无线信号的局部分布特征,并采用差分进化算法对GPR的超参数寻优过程进行改进,提高GPR的拟合精度。预测阶段根据K近邻原则确定扩展点的簇归属,使用相应的局部GPR模型进行预测,完成指纹库扩展。通过仿真与实验验证,所提算法将指纹库扩展至147%的情况下,平均预测误差相较于全局GPR降低了8.1%,具有良好的指纹库扩展精度。 展开更多
关键词 室内定位 位置指纹 模糊均值聚类 高斯过程回归 差分进化算法
下载PDF
基于空间加权距离的自适应Fuzzy C-Means算法研究 被引量:2
14
作者 王海起 朱锦 王劲峰 《测绘与空间地理信息》 2014年第2期18-21,24,共5页
空间聚类不仅应考虑GIS对象属性特征的相似性,还应考虑对象的空间邻近性。不同属性、位置特征在聚类中起到的作用不同。采用信息熵方法计算空间距离中各属性距离、位置距离的权重,权值大小用于度量相应特征在fuzzy c-means隶属度计算时... 空间聚类不仅应考虑GIS对象属性特征的相似性,还应考虑对象的空间邻近性。不同属性、位置特征在聚类中起到的作用不同。采用信息熵方法计算空间距离中各属性距离、位置距离的权重,权值大小用于度量相应特征在fuzzy c-means隶属度计算时的作用大小,并引入相似性指标,当两个聚类之间的相似度高于某个合并阈值时,则对应的一对聚类进行合并,从而克服需预先设置聚类类数的问题。通过应用实例的聚类有效性分析,与普通空间距离相比,基于空间加权距离的FCM算法具有稳定性和有效性。 展开更多
关键词 fuzzy e—means 空间加权距离 信息熵 自适应聚类合并
下载PDF
基于GAIFWFCM和TFNs的协同过滤算法
15
作者 金玉 徐新卫 +2 位作者 陶飞 韩业 陈荣凯 《南阳理工学院学报》 2024年第4期49-57,共9页
针对传统推荐系统中使用离散评分未能合理表达用户偏好的问题,将遗传算法引入优化特征加权模糊C均值,通过梯形模糊聚合相似目标用户,提出基于遗传算法的优化加权模糊C均值聚类融合梯形模糊数的协同过滤模型。通过遗传算法进行增强初始... 针对传统推荐系统中使用离散评分未能合理表达用户偏好的问题,将遗传算法引入优化特征加权模糊C均值,通过梯形模糊聚合相似目标用户,提出基于遗传算法的优化加权模糊C均值聚类融合梯形模糊数的协同过滤模型。通过遗传算法进行增强初始聚类中心,利用优化加权模糊C均值聚类融合梯形模糊数,分析类内与类间属性特征关系,实现用户精细划分,合理过滤推荐。在两组数据集中以MAE和RMSE作为评估指标进行实验,实验结果表明,所提算法在与其余6种算法对比中分类误差更低,对用户意愿识别更加清晰。 展开更多
关键词 协同过滤 梯形模糊数 模糊c均值 遗传算法 特征加权
下载PDF
基于K-means算法和FCM算法的聚类研究 被引量:3
16
作者 崔文迪 蔡佳佳 《现代计算机》 2007年第10期7-9,共3页
采用K-means算法和FCM算法实现对47个城市竞争力的聚类分析,选择较为简便的聚类有效性函数用于聚类结果的检验,得到了两种有效的聚类算法的实现方式,并验证该方法的合理性。
关键词 模糊聚类 K—means fcm
下载PDF
基于FCM聚类的光伏储能容量配置方法研究
17
作者 李浩宇 李思嘉 +1 位作者 宿月 常家维 《自动化仪表》 CAS 2024年第9期101-105,共5页
为提升分布式光伏储能容量配置的合理性,提出基于模糊C均值(FCM)聚类的光伏储能容量配置方法。通过分析分布式光伏系统拓扑结构,将分析结果作为信息依据,制定相应的分布式光伏储能容量配置方案。从分布式电源投资者及电网管理者角度制... 为提升分布式光伏储能容量配置的合理性,提出基于模糊C均值(FCM)聚类的光伏储能容量配置方法。通过分析分布式光伏系统拓扑结构,将分析结果作为信息依据,制定相应的分布式光伏储能容量配置方案。从分布式电源投资者及电网管理者角度制定目标及约束条件,构建分布式光伏储能容量配置模型。采用FCM聚类算法对配置模型内迭代计算的初值实施有效分配。该算法能够抑制光伏储能大容量蓄电池波动、提高储能性能和效率,从而获取最优容量配置。所提方法可以在短时间内实现储能出力,使光伏自消纳率平均值达到93.5%。该方法的分布式光伏储能容量配置效果较好。 展开更多
关键词 模糊c均值聚类 分布式光伏 储能容量配置 功率分配 光伏消纳 电池波动 储能出力
下载PDF
基于改进FCM和PSO-SVM的焊接缺陷识别
18
作者 穆晨光 王海登 +2 位作者 符浩 边传新 史新鑫 《失效分析与预防》 2024年第3期179-185,共7页
为实现海洋工程钢结构件焊接接头缺陷的客观、智能化分类,本文以其数字射线检测图像作为研究对象,进行基于改进的模糊C均值聚类算法(FCM)和粒子群优化支持向量机(PSO-SVM)的缺陷识别研究。首先,基于限制对比度直方图均衡化去除原始图像... 为实现海洋工程钢结构件焊接接头缺陷的客观、智能化分类,本文以其数字射线检测图像作为研究对象,进行基于改进的模糊C均值聚类算法(FCM)和粒子群优化支持向量机(PSO-SVM)的缺陷识别研究。首先,基于限制对比度直方图均衡化去除原始图像中干扰噪声,引入像素点加权系数ω改进FCM进行图像分割;然后,基于灰度共生矩阵提取图像纹理特征,利用主成分分析法进行特征数据降维,将粒子群优化与支持向量机分类相结合进行参数寻优,建立纹理特征与缺陷类型间的连续变量分类模型;最后,以多人工综合完全正确的评价结果验证缺陷识别模型的有效性和准确性。结果表明:所训练的识别模型准确率为96.11%,经验证其识别准确率约为95.2%。与未经限制对比度自适应直方图均衡化(CLAHE)增强的模型、反向传播(BP)神经网络模型对比,该模型可以很好地实现常见缺陷的识别,且误差小,可应用于船用钢数字射线焊接缺陷识别领域。 展开更多
关键词 改进fcm 纹理特征 粒子群算法 支持向量机 缺陷识别
下载PDF
FCM测站定权的LAGEOS-2卫星精密定轨影响分析
19
作者 王军傲 钟世明 +3 位作者 张杰 周冲冲 郭钊 路润民 《大地测量与地球动力学》 CSCD 北大核心 2024年第7期684-689,共6页
由于卫星激光测距(satellite laser ranging, SLR)台站的测距精度和稳定性存在差异,精密定轨中需要对不同性能的台站赋予不同权重。本文将模糊C均值(fuzzy C-means, FCM)聚类定权应用于LAGEOS-2精密定轨,并比较原始测站定权和FCM定权对... 由于卫星激光测距(satellite laser ranging, SLR)台站的测距精度和稳定性存在差异,精密定轨中需要对不同性能的台站赋予不同权重。本文将模糊C均值(fuzzy C-means, FCM)聚类定权应用于LAGEOS-2精密定轨,并比较原始测站定权和FCM定权对轨道精度的影响。结果表明:1)相较于原始测站定权,FCM定权更能反映各SLR台站的性能,提高定轨精度和观测值数量;2)对于ILRS四个质量分析机构,原始测站定权下JCET发布的质量报告在定轨精度上略优于其他中心,采用FCM定权后,以4个机构发布的质量报告进行定轨的结果在同一水平,轨道精度为4.83~4.86 cm。 展开更多
关键词 卫星激光测距 模糊c均值聚类定权 卫星精密定轨
下载PDF
基于VMD和FCM的火箭发动机涡轮泵状态监测方法
20
作者 敖一峰 李洪 +1 位作者 张金刚 黄辉 《测试技术学报》 2024年第5期527-534,551,共9页
面向重复使用火箭发动机的状态监测与故障诊断需求,针对振动信号的非平稳性和难以提取有效故障特征的问题,提出一种基于变分模态分解(Variational Mode Decomposition, VMD)和模糊C均值聚类(Fuzzy C-Means, FCM)的状态监测方法。采用优... 面向重复使用火箭发动机的状态监测与故障诊断需求,针对振动信号的非平稳性和难以提取有效故障特征的问题,提出一种基于变分模态分解(Variational Mode Decomposition, VMD)和模糊C均值聚类(Fuzzy C-Means, FCM)的状态监测方法。采用优化VMD算法自适应地将振动信号分解为多个本征模态分量(Intrinsic Mode Function, IMF),根据加权相关样本熵最大准则选取关键IMF分量;利用t分布随机近邻嵌入(t-SNE)对关键IMF分量的多维时域、频域特征降维,得到特征向量矩阵;利用模糊C均值聚类算法实现发动机工作状态的监测。将该方法应用于发动机涡轮泵工作状态监测,结果表明其能够提取振动信号关键特征,准确识别涡轮泵工作状态,测试集识别准确率达92.50%,为火箭发动机状态监测与故障诊断提供了理论支撑。 展开更多
关键词 火箭发动机 涡轮泵 状态监测 振动信号 变模态分解 模糊均值聚类
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部