期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning
1
作者 Jili Chen Hailan Wang Xiaolan Xie 《Computer Systems Science & Engineering》 2024年第3期645-663,共19页
Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced ... Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced by the random selection of initial cluster centers,and the performance of Euclid distance in complex high-dimensional data is poor.To solve the above problems,the improved FCM clustering algorithm based on density Canopy and Manifold learning(DM-FCM)is proposed.First,a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster centers,which improves the self-adaptability and stability of the algorithm.Then,considering that high-dimensional data often present a nonlinear structure,the manifold learning method is applied to construct a manifold spatial structure,which preserves the global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm on complex high-dimensional datasets.Fowlkes-Mallows Index(FMI),the weighted average of homogeneity and completeness(V-measure),Adjusted Mutual Information(AMI),and Adjusted Rand Index(ARI)are used as performance measures of clustering algorithms.The experimental results show that the manifold learning method is the superior distance measure,and the algorithm improves the clustering accuracy and performs superiorly in the clustering of low-dimensional and complex high-dimensional data. 展开更多
关键词 fuzzy c-means(fcm) cluster center density canopy ISOMAP clustering
下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
2
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2fcm topic concept space fuzzy c-means clustering text clustering
下载PDF
A New Method of Wind Turbine Bearing Fault Diagnosis Based on Multi-Masking Empirical Mode Decomposition and Fuzzy C-Means Clustering 被引量:11
3
作者 Yongtao Hu Shuqing Zhang +3 位作者 Anqi Jiang Liguo Zhang Wanlu Jiang Junfeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期156-167,共12页
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ... Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method. 展开更多
关键词 Wind TURBINE BEARING FAULTS diagnosis Multi-masking empirical mode decomposition (MMEMD) fuzzy c-mean (fcm) clustering
下载PDF
Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination
4
作者 Xianghui Hu Yiming Tang +2 位作者 Witold Pedrycz Jiuchuan Jiang Yichuan Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4917-4945,共29页
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ... Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed. 展开更多
关键词 fuzzy c-means(fcm) possibilistic clustering optimal number of clusters knowledge-driven machine learning fuzzy logic
下载PDF
A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning 被引量:3
5
作者 Xu Yubin Sun Yongliang Ma Lin 《High Technology Letters》 EI CAS 2011年第3期223-229,共7页
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i... Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM. 展开更多
关键词 wireless local area networks (WLAN) indoor positioning k-nearest neighbors (KNN) fuzzy c-means fcm clustering center
下载PDF
Research and Implementation of the Enterprise Evaluation Based on a Fusion Clustering Model of AHP-FCM 被引量:2
6
作者 侯彩虹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期147-151,共5页
Traditional clustering method is easy to slow convergence speed because of high data dimension and setting random initial clustering center. To improve these problems, a novel method combining subtractive clustering w... Traditional clustering method is easy to slow convergence speed because of high data dimension and setting random initial clustering center. To improve these problems, a novel method combining subtractive clustering with fuzzy C-means( FCM)clustering will be advanced. In the method, the initial cluster number and cluster center can be obtained using subtractive clustering. On this basis,clustering result will be further optimized with FCM. In addition,the data dimension will be reduced through the analytic hierarchy process( AHP) before clustering calculating.In order to verify the effectiveness of fusion algorithm,an example about enterprise credit evaluation will be carried out. The results show that the fusion clustering algorithm is suitable for classifying high-dimension data,and the algorithm also does well in running up processing speed and improving visibility of result. So the method is suitable to promote the use. 展开更多
关键词 fuzzy c-means(fcm) analytic hierarchy process(AHP) cluster analysis enterprise credit evaluation
下载PDF
Fault Pattern Recognition based on Kernel Method and Fuzzy C-means
7
作者 SUN Yebei ZHAO Rongzhen TANG Xiaobin 《International Journal of Plant Engineering and Management》 2016年第4期231-240,共10页
A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the c... A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery. 展开更多
关键词 Kernel method fuzzy c-means fcm pattern recognition clustering
下载PDF
结合FCMS与变分水平集的图像分割模型 被引量:26
8
作者 唐利明 田学全 +1 位作者 黄大荣 王晓峰 《自动化学报》 EI CSCD 北大核心 2014年第6期1233-1248,共16页
提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空... 提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空间特征,使得本文模型对噪声图像的聚类分割具有较强的鲁棒性.采用不同类型的实验图像,将本文模型与10个不同类型的图像分割模型进行了对比实验,实验结果显示本文模型能克服图像中噪声影响并取得较满意的聚类分割结果. 展开更多
关键词 变分水平集 图像聚类 图像分割 fcmS聚类 隶属度 聚类中心
下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
9
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊C均值聚类 联合反演 综合解释 先验约束信息 多属性
下载PDF
Adaptive Image Digital Watermarking with DCT and FCM 被引量:4
10
作者 SU Liyun MA Hong TANG Shifu 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1657-1660,共4页
A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visua... A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed. 展开更多
关键词 adaptive watermarking fractal modulation wavelet transform fuzzy c-means clustering fcm human visual system (HVS) discrete cosine transform (DCT)
下载PDF
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
11
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) fuzzy set theory Unsupervised classification Image quantization Image enhancement fuzzy c-means fcm clustering algorithm Membership function
下载PDF
Automated measurement of three-dimensional cerebral cortical thickness in Alzheimer’s patients using localized gradient vector trajectory in fuzzy membership maps
12
作者 Chiaki Tokunaga Hidetaka Arimura +9 位作者 Takashi Yoshiura Tomoyuki Ohara Yasuo Yamashita Kouji Kobayashi Taiki Magome Yasuhiko Nakamura Hiroshi Honda Hideki Hirata Masafumi Ohki Fukai Toyofuku 《Journal of Biomedical Science and Engineering》 2013年第3期327-336,共10页
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop... Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD. 展开更多
关键词 Alzheimer’s Disease (AD) fuzzy c-means clustering (fcm) THREE-DIMENSIONAL CEREBRAL CORTICAL Thickness LOCALIZED Gradient Vector
下载PDF
Fuzzy Clustering with Novel Separable Criterion 被引量:4
13
作者 尹中航 唐元钢 +1 位作者 孙富春 孙增圻 《Tsinghua Science and Technology》 SCIE EI CAS 2006年第1期50-53,共4页
Fuzzy clustering has been used widely in pattern recognition, image processing, and data analysis An improved fuzzy clustering algorithm was developed based on the conventional fuzzy c-means (FCM) to obtain better q... Fuzzy clustering has been used widely in pattern recognition, image processing, and data analysis An improved fuzzy clustering algorithm was developed based on the conventional fuzzy c-means (FCM) to obtain better quality clustering results. The update equations for the membership and the cluster center are derived from the alternating optimization algorithm. Two fuzzy scattering matrices in the objective function assure the compactness between data points and cluster centers, and also strengthen the separation between cluster centers in terms of a novel separable criterion. The clustering algorithm properties are shown to be an improvement over the FCM method's properties. Numerical simulations show that the clustering algorithm gives more accurate clustering results than the FCM method. 展开更多
关键词 fuzzy c-means fcm alternating optimization fuzzy clustering
原文传递
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
14
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(fcm) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance 被引量:1
15
作者 Shaochun PANG Yijie +1 位作者 SHAO Sen JIANG Keyuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期636-642,共7页
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ... This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%. 展开更多
关键词 objective function clustering center fuzzy c-means fcm clustering algorithm degree of member-ship
原文传递
基于FCM模型约束的二维直流电阻率正则化反演
16
作者 魏丽 汤洪志 +1 位作者 郭晶 张志勇 《地球物理学进展》 CSCD 北大核心 2024年第2期749-758,共10页
本文开展了二维直流电阻率模糊C均值聚类(FCM)约束反演研究.在经典最小结构模型正则化的基础上,将L_(1)范数与L2范数模型约束反演进行了对比,可以看出L_(1)范数反演结果相较L2范数边界更清晰、物性呈块状分布更明显.在此基础上,联合使用... 本文开展了二维直流电阻率模糊C均值聚类(FCM)约束反演研究.在经典最小结构模型正则化的基础上,将L_(1)范数与L2范数模型约束反演进行了对比,可以看出L_(1)范数反演结果相较L2范数边界更清晰、物性呈块状分布更明显.在此基础上,联合使用FCM模型约束,将精确岩石物性测量值作为参考聚类中心,引导反演物性向聚类中心发展,FCM聚类约束的应用可进一步提高反演的效果.合成数据与实测数据反演的结果表明,基于精确岩石物性引导的FCM模型约束与L_(1)范数最小结构模型联合,可以实现高精度的直流电阻率反演. 展开更多
关键词 L_(1)范数 正则化反演 fcm聚类 直流电阻率
原文传递
快速自适应非局部空间加权与隶属度连接的模糊C-均值噪声图像分割算法 被引量:12
17
作者 王小鹏 王庆圣 +1 位作者 焦建军 梁金诚 《电子与信息学报》 EI CSCD 北大核心 2021年第1期171-178,共8页
针对传统模糊C-均值聚类(FCM)算法难以对噪声图像进行分割的问题,该文提出一种快速自适应非局部空间加权与隶属度连接的模糊FCM抗噪图像分割算法。首先,利用一种非局部空间信息快速计算方法,将以图像所有像素为循环的原始非局部信息计... 针对传统模糊C-均值聚类(FCM)算法难以对噪声图像进行分割的问题,该文提出一种快速自适应非局部空间加权与隶属度连接的模糊FCM抗噪图像分割算法。首先,利用一种非局部空间信息快速计算方法,将以图像所有像素为循环的原始非局部信息计算方法,改为以搜索窗口尺寸为循环,利用空间位移图像与递归高斯滤波的计算方法,克服非局部空间信息计算复杂的问题;其次,计算原始图像与非局部信息项的差值的平方,将其作为非局部信息项的自适应权重,并将差值的平方作倒数变换,作为原始图像的自适应权重;最后,将每个聚类簇中所有像素隶属度之和的对数平方加入目标函数的分母,形成隶属度连接,减少目标函数迭代次数。含噪人工与自然图像分割实验表明,该算法在分割准确度、平均交并比、归一化互信息、运行时间与迭代次数等性能方面优于其他几种FCM算法。 展开更多
关键词 噪声图像分割 模糊C-均值聚类 非局部空间信息 自适应加权 隶属度连接
下载PDF
基于光学和SAR遥感图像融合的洪灾区域检测方法 被引量:13
18
作者 王志豪 李刚 蒋骁 《雷达学报(中英文)》 CSCD 北大核心 2020年第3期539-553,共15页
基于光学和合成孔径雷达(SAR)图像融合的洪灾区域检测方法可以全天候、高时效地检测洪灾区域。由于SAR图像中存在大量随机分布的相干斑噪声,传统洪灾区域检测方法的检测结果存在较高的虚警率。该文在模糊C均值聚类方法(FCM)的基础上提... 基于光学和合成孔径雷达(SAR)图像融合的洪灾区域检测方法可以全天候、高时效地检测洪灾区域。由于SAR图像中存在大量随机分布的相干斑噪声,传统洪灾区域检测方法的检测结果存在较高的虚警率。该文在模糊C均值聚类方法(FCM)的基础上提出了分级聚类算法(H-FCM),该方法将洪灾后的SAR图像与洪灾前的光学图像融合。基于融合图像,该方法利用提出的分级聚类模型获得洪灾区域的初步检测结果。此外,该算法在利用所提出的区域生长算法获得洪灾前河流位置后,将其作为初步检测结果的空间约束,进一步筛除疑似洪灾区域,并显著地提升了检测性能。该文的实验数据包括1999年英国格洛斯特洪灾前后的遥感图像和2019年中国南昌洪灾前后的遥感图像。通过对比实验,H-FCM算法的有效性得到验证。 展开更多
关键词 遥感图像融合 光学 合成孔径雷达 分级C均值聚类算法 分级聚类 区域生长 空间约束
下载PDF
Magnetic Tile Surface Defect Detection Based on Texture Feature Clustering 被引量:2
19
作者 LI Dan NIU Zhongbin PENG Dongxu 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第5期663-670,共8页
In the field of magnetic tile surface detection, artificial detection efficiency is low, and the traditional image segmentation algorithm cannot show good performance when the gray scale of the magnetic tile itself is... In the field of magnetic tile surface detection, artificial detection efficiency is low, and the traditional image segmentation algorithm cannot show good performance when the gray scale of the magnetic tile itself is small, or the image is affected by uneven illumination. In view of these questions, this paper puts forward a new clustering segmentation algorithm based on texture feature. This algorithm uses Gabor function spectra to represent magnetic tile surface texture and then uses a user-defined local product coefficient to modify Gabor energy spectra to get the center number of fuzzy C-means(FCM) clustering. Moreover, the user-defined Gabor energy spectra image is segmented by clustering algorithm. Finally, it extracts the magnetic tile surface defects according to the changes of regional gray characteristics. Experiments show that the algorithm effectively overcomes the noise interference and makes a good performance on accuracy and robustness, which can effectively detect crack,damage, pit and other defects on the magnetic tile surface. 展开更多
关键词 defect detection of magnetic tile Gabor functions local characteristics of gray scale fuzzy c-means(fcm) clustering
原文传递
Three-dimensional gravity inversion based on optimization processing from edge detection
20
作者 Sheng Liu Shuanggen Jin Qiang Chen 《Geodesy and Geodynamics》 CSCD 2022年第5期503-524,共22页
Gravity inversion requires much computation,and inversion results are often non-unique.The first problem is often due to the large number of grid cells.Edge detection method,i.e.,tilt angle method of analytical signal... Gravity inversion requires much computation,and inversion results are often non-unique.The first problem is often due to the large number of grid cells.Edge detection method,i.e.,tilt angle method of analytical signal amplitude(TAS),helps to identify the boundaries of underground geological anomalies at different depths,which can be used to optimize the grid and reduce the number of grid cells.The requirement of smooth inversion is that the boundaries of the meshing area should be continuous rather than jagged.In this paper,the optimized meshing strategy is improved,and the optimized meshing region obtained by the TAS is changed to a regular region to facilitate the smooth inversion.For the second problem,certain constraints can be used to improve the accuracy of inversion.The results of analytic signal amplitude(ASA)are used to delineate the central distribution of geological bodies.We propose a new method using the results of ASA to perform local constraints to reduce the non-uniqueness of inversion.The guided fuzzy c-means(FCM)clustering algorithm combined with priori petrophysical information is also used to reduce the non-uniqueness of gravity inversion.The Open Acc technology is carried out to speed up the computation for parallelizing the serial program on GPU.In general,the TAS is used to reduce the number of grid cells.The local weighting and priori petrophysical constraint are used in conjunction with the FCM algorithm during the inversion,which improves the accuracy of inversion.The inversion is accelerated by the Open Acc technology on GPU.The proposed method is validated using synthetic data,and the results show that the efficiency and accuracy of gravity inversion are greatly improved by using the proposed method. 展开更多
关键词 Gravity inversion Locally weighted constraint Petrophysical constrain fuzzy c-means clustering algorithm Open Acc technology
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部