Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced ...Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced by the random selection of initial cluster centers,and the performance of Euclid distance in complex high-dimensional data is poor.To solve the above problems,the improved FCM clustering algorithm based on density Canopy and Manifold learning(DM-FCM)is proposed.First,a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster centers,which improves the self-adaptability and stability of the algorithm.Then,considering that high-dimensional data often present a nonlinear structure,the manifold learning method is applied to construct a manifold spatial structure,which preserves the global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm on complex high-dimensional datasets.Fowlkes-Mallows Index(FMI),the weighted average of homogeneity and completeness(V-measure),Adjusted Mutual Information(AMI),and Adjusted Rand Index(ARI)are used as performance measures of clustering algorithms.The experimental results show that the manifold learning method is the superior distance measure,and the algorithm improves the clustering accuracy and performs superiorly in the clustering of low-dimensional and complex high-dimensional data.展开更多
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an...The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.展开更多
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit...Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm.展开更多
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con...To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.展开更多
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis...Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.展开更多
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ...Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.展开更多
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ...Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage...Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage of spatial information, regardless of the pixels' correlation. In this letter, a novel fuzzy C-means clustering algorithm is introduced, which is based on image's neighborhood system. During classification procedure, the novel algorithm regards all pixels'fuzzy membership as a random field. The neighboring pixels' fuzzy membership information is used for the algorithm's iteration procedure. As a result, the algorithm gives a more smooth classification result and cuts down the computation time.展开更多
Traditional clustering method is easy to slow convergence speed because of high data dimension and setting random initial clustering center. To improve these problems, a novel method combining subtractive clustering w...Traditional clustering method is easy to slow convergence speed because of high data dimension and setting random initial clustering center. To improve these problems, a novel method combining subtractive clustering with fuzzy C-means( FCM)clustering will be advanced. In the method, the initial cluster number and cluster center can be obtained using subtractive clustering. On this basis,clustering result will be further optimized with FCM. In addition,the data dimension will be reduced through the analytic hierarchy process( AHP) before clustering calculating.In order to verify the effectiveness of fusion algorithm,an example about enterprise credit evaluation will be carried out. The results show that the fusion clustering algorithm is suitable for classifying high-dimension data,and the algorithm also does well in running up processing speed and improving visibility of result. So the method is suitable to promote the use.展开更多
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o...In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.展开更多
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities...Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes.展开更多
In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on comp...In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data.展开更多
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research...In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints.展开更多
A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the c...A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery.展开更多
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes...In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model.展开更多
An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method f...An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC.展开更多
基金The National Natural Science Foundation of China(No.62262011)the Natural Science Foundation of Guangxi(No.2021JJA170130).
文摘Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced by the random selection of initial cluster centers,and the performance of Euclid distance in complex high-dimensional data is poor.To solve the above problems,the improved FCM clustering algorithm based on density Canopy and Manifold learning(DM-FCM)is proposed.First,a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster centers,which improves the self-adaptability and stability of the algorithm.Then,considering that high-dimensional data often present a nonlinear structure,the manifold learning method is applied to construct a manifold spatial structure,which preserves the global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm on complex high-dimensional datasets.Fowlkes-Mallows Index(FMI),the weighted average of homogeneity and completeness(V-measure),Adjusted Mutual Information(AMI),and Adjusted Rand Index(ARI)are used as performance measures of clustering algorithms.The experimental results show that the manifold learning method is the superior distance measure,and the algorithm improves the clustering accuracy and performs superiorly in the clustering of low-dimensional and complex high-dimensional data.
基金supported by the Planning Special Project of Guangdong Power Grid Co.,Ltd.:“Study on load modeling based on total measurement and discrimination method suitable for system characteristic analysis and calculation during the implementation of target grid in Guangdong power grid”(0319002022030203JF00023).
文摘The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.
文摘Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm.
基金The National Natural Science Foundation of China(No60672056)Open Fund of MOE-MS Key Laboratory of Multime-dia Computing and Communication(No06120809)
文摘To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.
文摘Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.
基金supported by the National Key Research and Development Program of China(No.2022YFB3304400)the National Natural Science Foundation of China(Nos.6230311,62303111,62076060,61932007,and 62176083)the Key Research and Development Program of Jiangsu Province of China(No.BE2022157).
文摘Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.
基金Supported by National Key R&D Projects(Grant No.2018YFB0905500)National Natural Science Foundation of China(Grant No.51875498)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant Nos.E2018203439,E2018203339,F2016203496)Key Scientific Research Projects Plan of Henan Higher Education Institutions(Grant No.19B460001)
文摘Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.
文摘Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage of spatial information, regardless of the pixels' correlation. In this letter, a novel fuzzy C-means clustering algorithm is introduced, which is based on image's neighborhood system. During classification procedure, the novel algorithm regards all pixels'fuzzy membership as a random field. The neighboring pixels' fuzzy membership information is used for the algorithm's iteration procedure. As a result, the algorithm gives a more smooth classification result and cuts down the computation time.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.12YZ191)
文摘Traditional clustering method is easy to slow convergence speed because of high data dimension and setting random initial clustering center. To improve these problems, a novel method combining subtractive clustering with fuzzy C-means( FCM)clustering will be advanced. In the method, the initial cluster number and cluster center can be obtained using subtractive clustering. On this basis,clustering result will be further optimized with FCM. In addition,the data dimension will be reduced through the analytic hierarchy process( AHP) before clustering calculating.In order to verify the effectiveness of fusion algorithm,an example about enterprise credit evaluation will be carried out. The results show that the fusion clustering algorithm is suitable for classifying high-dimension data,and the algorithm also does well in running up processing speed and improving visibility of result. So the method is suitable to promote the use.
基金Supported by the University Doctorate Special Research Fund (No. 20030614001) and the Youth Scholarship Leader Fund of Univ. of Electro. Sci. and Tech. of China.
文摘In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.
文摘Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes.
文摘In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data.
文摘In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints.
基金supported by the National Natural Science Foundation of China(51675253)
文摘A method about fault identification is proposed to solve the relationship among fault features of large rotating machinery, which is extremely complicated and nonlinear. This paper studies the rotor test-rig and the clustering of data sets and fault pattern recognitions. The present method firstly maps the data from their original space to a high dimensional Kernel space which makes the highly nonlinear data in low-dimensional space become linearly separable in Kernel space. It highlights the differences among the features of the data set. Then fuzzy C-means (FCM) is conducted in the Kernel space. Each data is assigned to the nearest class by computing the distance to the clustering center. Finally, test set is used to judge the results. The convergence rate and clustering accuracy are better than traditional FCM. The study shows that the method is effective for the accuracy of pattern recognition on rotating machinery.
基金supported by the project of science and technology of Henan province under Grant No.222102240024 and 202102210269the Key Scientific Research projects in Colleges and Universities in Henan Grant No.22A460013 and No.22B413004.
文摘In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model.
文摘An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC.