期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FUZZY ECCENTRICITY AND GROSS ERROR IDENTIFICATION 被引量:1
1
作者 YE Bing FEI Yetai LIAO Benqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期143-145,共3页
The dominant and recessive effect made by exceptional interferer is analyzed in measurement system based on responsive character, and the gross error model of fuzzy clustering based on fuzzy relation and fuzzy equipol... The dominant and recessive effect made by exceptional interferer is analyzed in measurement system based on responsive character, and the gross error model of fuzzy clustering based on fuzzy relation and fuzzy equipollance relation is built. The concept and calculate formula of fuzzy eccentricity are defined to deduce the evaluation rule and function ofgruss error, on the base of them, a fuzzy clustering method of separating and discriminating the gross error is found, utilized in the dynamic circular division measurement system, the method can identify and eliminate gross error in measured data, and reduce measured data dispersity. Experimental results indicate that the use of the method and model enables repetitive precision of the system to improve 80% higher than the foregoing system, to reach 3.5 s, and angle measurement error is less than 7 s. 展开更多
关键词 fuzzy clustering Gross error model fuzzy eccentricity Repetitive precision improvement
下载PDF
Reactive Navigation of Underwater Mobile Robot Using ANFIS Approach in a Manifold Manner 被引量:5
2
作者 Shubhasri Kundu Dayal R. Parhi 《International Journal of Automation and computing》 EI CSCD 2017年第3期307-320,共14页
Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations dur... Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations during underwater motion are responsible for nonlinearities in dynamic behavior of underwater robot as well as uncertainties in hydrodynamic coefficients. Reactive behaviors of underwater robot are designed considering the position and orientation of both target and nearest obstacle from robot s current position. Human like reasoning power and approximation based learning skill of neural based adaptive fuzzy inference system(ANFIS)has been found to be effective for underwater multivariable motion control. More than one ANFIS models are used here for achieving goal and obstacle avoidance while avoiding local minima situation in both horizontal and vertical plane of three dimensional workspace.An error gradient approach based on input-output training patterns for learning purpose has been promoted to spawn trajectory of underwater robot optimizing path length as well as time taken. The simulation and experimental results endorse sturdiness and viability of the proposed method in comparison with other navigational methodologies to negotiate with hectic conditions during motion of underwater mobile robot. 展开更多
关键词 Adaptive fuzzy inference system(ANFIS) error gradient optimal path obstacle avoidance behavior steering angle target seeking behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部