期刊文献+
共找到8,576篇文章
< 1 2 250 >
每页显示 20 50 100
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering
1
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
下载PDF
Effective data transmission through energy-efficient clustering and Fuzzy-Based IDS routing approach in WSNs
2
作者 Saziya TABBASSUM Rajesh Kumar PATHAK 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期1-16,共16页
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a... Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner. 展开更多
关键词 Low energy adaptive clustering hierarchy(LEACH) Intrusion detection system(IDS) Wireless sensor network(WSN) fuzzy logic and artificial neural network(ANN)
下载PDF
Fuzzy BC-k-modes:一种分类矩阵对象数据的聚类算法
3
作者 李顺勇 余曼 王改变 《计算机应用与软件》 北大核心 2023年第1期287-297,共11页
传统的聚类算法主要对具有单值属性的数据进行聚类研究,针对矩阵对象数据的研究较少,提出一种新的fuzzy between-cluster k-modes(简称Fuzzy BC-k-modes)聚类算法。在Fuzzy BC-k-modes算法中,采用增加簇间信息(不同类中的对象到其他类... 传统的聚类算法主要对具有单值属性的数据进行聚类研究,针对矩阵对象数据的研究较少,提出一种新的fuzzy between-cluster k-modes(简称Fuzzy BC-k-modes)聚类算法。在Fuzzy BC-k-modes算法中,采用增加簇间信息(不同类中的对象到其他类中心的距离)去修正目标函数,在对修正的目标函数寻求局部最优解时,提出隶属度矩阵的更新公式。最后,在四个真实数据集上验证了Fuzzy BC-k-modes算法的有效性,并且分析了模糊因子与隶属度间的关系。 展开更多
关键词 簇间信息 分类矩阵对象数据 聚类 fuzzy BC-k-modes算法
下载PDF
Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination
4
作者 Xianghui Hu Yiming Tang +2 位作者 Witold Pedrycz Jiuchuan Jiang Yichuan Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4917-4945,共29页
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ... Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed. 展开更多
关键词 fuzzy C-Means(FCM) possibilistic clustering optimal number of clusters knowledge-driven machine learning fuzzy logic
下载PDF
Hyperspectral Image Based Interpretable Feature Clustering Algorithm
5
作者 Yaming Kang PeishunYe +1 位作者 Yuxiu Bai Shi Qiu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2151-2168,共18页
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy... Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81. 展开更多
关键词 HYPERSPECTRAL fuzzy clustering tissue P system band selection interpretable
下载PDF
An air combat maneuver pattern extraction based on time series segmentation and clustering analysis
6
作者 Zhifei Xi Yingxin Kou +2 位作者 Zhanwu Li Yue Lv You Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期149-162,共14页
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me... Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy. 展开更多
关键词 Maneuver pattern extraction Data mining fuzzy segmentation Selective ensemble clustering
下载PDF
Analysis of Electricity Consumption Pattern Clustering and Electricity Consumption Behavior
7
作者 Liang Zhu Junyang Liu +2 位作者 Chen Hu Yanli Zhi Yupeng Liu 《Energy Engineering》 EI 2024年第9期2639-2653,共15页
Studying user electricity consumption behavior is crucial for understanding their power usage patterns.However,the traditional clustering methods fail to identify emerging types of electricity consumption behavior.To ... Studying user electricity consumption behavior is crucial for understanding their power usage patterns.However,the traditional clustering methods fail to identify emerging types of electricity consumption behavior.To address this issue,this paper introduces a statistical analysis of clusters and evaluates the set of indicators for power usage patterns.The fuzzy C-means clustering algorithm is then used to analyze 6 months of electricity consumption data in 2017 from energy storage equipment,agricultural drainage irrigation,port shore power,and electric vehicles.Finally,the proposed method is validated through experiments,where the Davies-Bouldin index and profile coefficient are calculated and compared.Experiments showed that the optimal number of clusters is 4.This study demonstrates the potential of using a fuzzy C-means clustering algorithmin identifying emerging types of electricity consumption behavior,which can help power system operators and policymakers to make informed decisions and improve energy efficiency. 展开更多
关键词 Electricity consumption clustering consumption behavior fuzzy C-means
下载PDF
Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering for Noisy Data
8
作者 Pham Huy Thong Florentin Smarandache +5 位作者 Phung The Huan Tran Manh Tuan Tran Thi Ngan Vu Duc Thai Nguyen Long Giang Le Hoang Son 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1981-1997,共17页
Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize cl... Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize clustering for cognitive research.Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties.Noisy data can lead to incorrect object recognition and inference.This research aims to innovate a novel clustering approach,named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering(PNTS3FCM),to solve the clustering problem with noisy data using neutral and refusal degrees in the definition of Picture Fuzzy Set(PFS)and Neutrosophic Set(NS).Our contribution is to propose a new optimization model with four essential components:clustering,outlier removal,safe semi-supervised fuzzy clustering and partitioning with labeled and unlabeled data.The effectiveness and flexibility of the proposed technique are estimated and compared with the state-of-art methods,standard Picture fuzzy clustering(FC-PFS)and Confidence-weighted safe semi-supervised clustering(CS3FCM)on benchmark UCI datasets.The experimental results show that our method is better at least 10/15 datasets than the compared methods in terms of clustering quality and computational time. 展开更多
关键词 Safe semi-supervised fuzzy clustering picture fuzzy set neutrosophic set data partition with noises fuzzy clustering
下载PDF
Encephalitis Detection from EEG Fuzzy Density-Based Clustering Model with Multiple Centroid
9
作者 Hanan Abdullah Mengash Alaaeldin M.Hafez Hanan A.Hosni Mahmoud 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3129-3140,共12页
Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stag... Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stage is very crucial.Therefore,in this paper,we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data(EEG).Also,we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis.Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration,but this single point does not contain adequate information.To precisely extract accurate inner structural data,a multiple centroids approach is employed and defined in this paper,which defines the cluster configuration by allocating weights to each state in the cluster.The multiple EEG view fuzzy learning approach incorporates data from every sin-gle view to enhance the model's clustering performance.Also a fuzzy Density-Based Clustering model with multiple centroids(FDBC)is presented.This model employs multiple real state centroids to define clusters using Partitioning Around Centroids algorithm.The Experimental results validate the medical importance of the proposed clustering model. 展开更多
关键词 Density clustering clustering structural data fuzzy set
下载PDF
Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm
10
作者 Jipeng Gu Weijie Zhang +5 位作者 Youbing Zhang Binjie Wang Wei Lou Mingkang Ye Linhai Wang Tao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2221-2236,共16页
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met... An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations. 展开更多
关键词 Short-term load forecasting fuzzy time series K-means clustering distribution stations
下载PDF
Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing
11
作者 P.Rahul N.Kanthimathi +1 位作者 B.Kaarthick M.Leeban Moses 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1583-1600,共18页
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th... Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc. 展开更多
关键词 Ad-hoc load balancing H-MANET fuzzy logic system genetic algorithm node quality-based clustering algorithm improved weighted clustering fruitfly optimization
下载PDF
Power Incomplete Data Clustering Based on Fuzzy Fusion Algorithm
12
作者 Yutian Hong Yuping Yan 《Energy Engineering》 EI 2023年第1期245-261,共17页
With the rapid development of the economy,the scale of the power grid is expanding.The number of power equipment that constitutes the power grid has been very large,which makes the state data of power equipment grow e... With the rapid development of the economy,the scale of the power grid is expanding.The number of power equipment that constitutes the power grid has been very large,which makes the state data of power equipment grow explosively.These multi-source heterogeneous data have data differences,which lead to data variation in the process of transmission and preservation,thus forming the bad information of incomplete data.Therefore,the research on data integrity has become an urgent task.This paper is based on the characteristics of random chance and the Spatio-temporal difference of the system.According to the characteristics and data sources of the massive data generated by power equipment,the fuzzy mining model of power equipment data is established,and the data is divided into numerical and non-numerical data based on numerical data.Take the text data of power equipment defects as the mining material.Then,the Apriori algorithm based on an array is used to mine deeply.The strong association rules in incomplete data of power equipment are obtained and analyzed.From the change trend of NRMSE metrics and classification accuracy,most of the filling methods combined with the two frameworks in this method usually show a relatively stable filling trend,and will not fluctuate greatly with the growth of the missing rate.The experimental results show that the proposed algorithm model can effectively improve the filling effect of the existing filling methods on most data sets,and the filling effect fluctuates greatly with the increase of the missing rate,that is,with the increase of the missing rate,the improvement effect of the model for the existing filling methods is higher than 4.3%.Through the incomplete data clustering technology studied in this paper,a more innovative state assessment of smart grid reliability operation is carried out,which has good research value and reference significance. 展开更多
关键词 Power system equipment parameter incomplete data fuzzy analysis data clustering
下载PDF
A New Integrated Fuzzifier Evaluation and Selection (NIFEs) Algorithm for Fuzzy Clustering
13
作者 Chanpaul Jin Wang Hua Fang +2 位作者 Sun Kim Ann Moormann Honggang Wang 《Journal of Applied Mathematics and Physics》 2015年第7期802-807,共6页
Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achiev... Fuzzy C-means (FCM) is simple and widely used for complex data pattern recognition and image analyses. However, selecting an appropriate fuzzifier (m) is crucial in identifying an optimal number of patterns and achieving higher clustering accuracy, which few studies have investigated. Built upon two existing methods on selecting fuzzifier, we developed an integrated fuzzifier evaluation and selection algorithm and tested it using real datasets. Our findings indicate that the consistent optimal number of clusters can be learnt from testing different fuzzifiers for each dataset and the fuzzifier with the lowest value for this consistency should be selected for clustering. Our evaluation also shows that the fuzzifier impacts the clustering accuracy. For longitudinal data with missing values, m = 2 could be an empirical rule to start fuzzy clustering, and the best clustering accuracy was achieved for tested data, especially using our multiple-imputation based fuzzy clustering. 展开更多
关键词 Fuzzifier fuzzy C-MEANS Multiple Imputation-Based fuzzy clustering (MIfuzzy) MISSING DATA Longitudinal DATA
下载PDF
基于分类型矩阵对象数据的MD fuzzy k-modes聚类算法 被引量:10
14
作者 李顺勇 张苗苗 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2019年第6期1325-1337,共13页
传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,... 传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,针对矩阵对象数据聚类算法的研究相对较少,还有很多问题有待解决.利用fuzzy k-modes算法的聚类过程,提出一种基于矩阵对象数据的matrix-object data fuzzy k-modes(MD fuzzy k-modes)聚类算法.该算法结合模糊集的概念引入模糊因子β,重新定义了矩阵对象间的相异性度量,并给出类中心的启发式更新算法.最后,在5个真实数据集上验证了MD fuzzy k-modes算法的有效性,并分析了模糊因子β与隶属度w之间的关系.大数据时代,利用MD fuzzy k-modes算法对多条记录进行聚类,能更易发现顾客的消费偏好,从而做出更有针对性的推荐. 展开更多
关键词 矩阵对象数据 MD fuzzy k-modes算法 相异性度量 类中心 聚类
下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
15
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2FCM topic concept space fuzzy c-means clustering text clustering
下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
16
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
下载PDF
Study on Pests Forecasting Using the Method of Neural Network Based on Fuzzy Clustering 被引量:1
17
作者 韦艳玲 《Agricultural Science & Technology》 CAS 2009年第4期159-163,共5页
Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests ... Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests forecasting using the method of neural network based on fuzzy clustering was proposed in this experiment. The simulation results demonstrated that the method was simple and practical and could forecast pests fast and accurately, particularly, the method could obtain good results with few samples and samples correlation. 展开更多
关键词 Neural network fuzzy clustering PEST Forecasting
下载PDF
基于改进Fuzzy ART的自适应雷达信号分选
18
作者 马志峰 张越 +1 位作者 董健 傅雄军 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第9期990-996,共7页
侦察接收机对获取的辐射源波形去交织以分离不同信号,称为信号分选,是电磁频谱战系统的核心技术.复杂电磁环境下脉冲流密度大、时域波形及诸域特征严重交叠,导致多数基于无监督模型的信号分选方法难以胜任.提出一种可自适应调整警戒阈... 侦察接收机对获取的辐射源波形去交织以分离不同信号,称为信号分选,是电磁频谱战系统的核心技术.复杂电磁环境下脉冲流密度大、时域波形及诸域特征严重交叠,导致多数基于无监督模型的信号分选方法难以胜任.提出一种可自适应调整警戒阈值的模糊自适应共振理论(AVT fuzzy ART)聚类算法,基于对属性差异敏感的曼哈顿距离自适应调整警戒阈值,依据在线累积数据得出的辐射源瞬态聚类概率对警戒阈值动态加权.仿真结果表明,该方法能在无历史先验信息的条件下胜任多类别辐射源信号去交错. 展开更多
关键词 电磁频谱战 雷达信号分选 模糊自适应共振 聚类
下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
19
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm Kernel fuzzy C-means algorithm clustering evaluation
下载PDF
Hierarchical hesitant fuzzy K-means clustering algorithm 被引量:21
20
作者 CHEN Na XU Ze-shui XIA Mei-mei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第1期1-17,共17页
Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets ar... Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm. 展开更多
关键词 90B50 68T10 62H30 Hesitant fuzzy set hierarchical clustering K-means clustering intuitionisitc fuzzy set
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部