A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree o...A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.展开更多
基金The National Natural Science Foundation of China (No.60503023,60872160)the Natural Science Foundation for Universities ofJiangsu Province (No.08KJD520009)the Intramural Research Foundationof Nanjing University of Information Science and Technology(No.Y603)
文摘A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.