This paper focused on selection of best materials for absorber tube and reflective surfaces of Solar Parabolic Collector (SPC) using fuzzy logic, after analysing the material data. The glass mirror and Aluminium absor...This paper focused on selection of best materials for absorber tube and reflective surfaces of Solar Parabolic Collector (SPC) using fuzzy logic, after analysing the material data. The glass mirror and Aluminium absorber have been identified as best materials. These selected materials are replaced in existing experimental setup. An experimental design is prepared based on the considered parabolic collector parameters: Absorptivity, Reflectivity and Period of Sun Incidence. During experiments, outlet temperature of water and discharge is recorded for each experimental run. These data are analyzed using fuzzy Logic integrated with the Taguchi method and optimal parameter combination has been found.展开更多
Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networ...Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networking models demand a large control overhead in eNodeB. Moreover, the topology should be calculated again due to the mobility of terminals, which causes the long delay. In this work, we model multicast network construction in D2 D communication through a fuzzy mathematics and game theory based algorithm. In resource allocation, we assume that user equipment(UE) can detect the available frequency and the fuzzy mathematics is introduced to describe an uncertain relationship between the resource and UE distributedly, which diminishes the time delay. For forming structure, a distributed myopic best response dynamics formation algorithm derived from a novel concept from the coalitional game theory is proposed, in which every UE can self-organize into stable structure without the control from eNodeB to improve its utilities in terms of rate and bit error rate(BER) while accounting for a link maintenance cost, and adapt this topology to environmental changes such as mobility while converging to a Nash equilibrium fast. Simulation results show that the proposed architecture converges to a tree network quickly and presents significant gains in terms of average rate utility reaching up to 50% compared to the star topology where all of the UE is directly connected to eNodeB.展开更多
The selection of proper materials for a structural component is critical in engineering design. Existing design procedures may currently be sufficient, especially where experience exists, but fierce industrial competi...The selection of proper materials for a structural component is critical in engineering design. Existing design procedures may currently be sufficient, especially where experience exists, but fierce industrial competition is spurring the search for improved methods and tools. The main drivers are quality, life-cycle cost, and time-to-market. Improved design efficiency and accuracy may have an enormous impact on the economic viability of the final product. The use of computer-aided systems can assist the designer in selecting the ap- propriate material these may potentially reduce product cost and time-to-market while assisting the concur- rent engineering activities, thereby resolving problems related to materials presented during the initial phase of design. This paper focuses on specific issues such as material selection at early design stage. In this paper material selection algorithm is developed using fuzzy logic technique for selection of proper material from database as per design engineers’ criteria. The information obtained from the selection algorithm is ex- changed through a properly secured web page through pure internet communication to different users in the enterprise so that it can create concurrent engineering environment throughout the product life cycle.展开更多
Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and ph...Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and photoresponse among others show great potential for various applications.These include photodetectors,field-effect transistors,piezoelectric devices,modulators,and energy harvesting devices.However,as a new member of the 2D material family,much less known is about 2D Te compared to other 2D materials.Motivated by this lack of knowledge,we review the recent progress of research into 2D Te nanoflakes.Firstly,we introduce the background and motivation of this review.Then,the crystal structures and synthesis methods are presented,followed by an introduction to their physical properties and applications.Finally,the challenges and further development directions are summarized.We believe that milestone investigations of 2D Te nanoflakes will emerge soon,which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.展开更多
The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, so...The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, sodium thiosulphate pentahydrate is employed as phase change material and it is stored in stainless steel capsules. These capsules are kept in fabricated tank and hot water is supplied into it. The experimental design is prepared by considering the parameters: flow rate, heat transfer fluid inlet temperature and PCM capsule shape. Experiments are conducted according to the experimental design and responses are recorded. The effect of selected parameters on TES using PCM is studied by analyzing experimental data. The experimental data are also analyzed using Fuzzy Logic to find the optimal values of flow rate, heat transfer fluid inlet temperature and PCM capsule shapes. The present work utilizes Fuzzy Logic to find the optimal parameters for designing the effective Thermal Energy Storage System (TES).展开更多
文摘This paper focused on selection of best materials for absorber tube and reflective surfaces of Solar Parabolic Collector (SPC) using fuzzy logic, after analysing the material data. The glass mirror and Aluminium absorber have been identified as best materials. These selected materials are replaced in existing experimental setup. An experimental design is prepared based on the considered parabolic collector parameters: Absorptivity, Reflectivity and Period of Sun Incidence. During experiments, outlet temperature of water and discharge is recorded for each experimental run. These data are analyzed using fuzzy Logic integrated with the Taguchi method and optimal parameter combination has been found.
基金supported by the National Science and Technology Major Project of China(2013ZX03005007-004)the National Natural Science Foundation of China(6120101361671179)
文摘Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networking models demand a large control overhead in eNodeB. Moreover, the topology should be calculated again due to the mobility of terminals, which causes the long delay. In this work, we model multicast network construction in D2 D communication through a fuzzy mathematics and game theory based algorithm. In resource allocation, we assume that user equipment(UE) can detect the available frequency and the fuzzy mathematics is introduced to describe an uncertain relationship between the resource and UE distributedly, which diminishes the time delay. For forming structure, a distributed myopic best response dynamics formation algorithm derived from a novel concept from the coalitional game theory is proposed, in which every UE can self-organize into stable structure without the control from eNodeB to improve its utilities in terms of rate and bit error rate(BER) while accounting for a link maintenance cost, and adapt this topology to environmental changes such as mobility while converging to a Nash equilibrium fast. Simulation results show that the proposed architecture converges to a tree network quickly and presents significant gains in terms of average rate utility reaching up to 50% compared to the star topology where all of the UE is directly connected to eNodeB.
文摘The selection of proper materials for a structural component is critical in engineering design. Existing design procedures may currently be sufficient, especially where experience exists, but fierce industrial competition is spurring the search for improved methods and tools. The main drivers are quality, life-cycle cost, and time-to-market. Improved design efficiency and accuracy may have an enormous impact on the economic viability of the final product. The use of computer-aided systems can assist the designer in selecting the ap- propriate material these may potentially reduce product cost and time-to-market while assisting the concur- rent engineering activities, thereby resolving problems related to materials presented during the initial phase of design. This paper focuses on specific issues such as material selection at early design stage. In this paper material selection algorithm is developed using fuzzy logic technique for selection of proper material from database as per design engineers’ criteria. The information obtained from the selection algorithm is ex- changed through a properly secured web page through pure internet communication to different users in the enterprise so that it can create concurrent engineering environment throughout the product life cycle.
基金supported by the National Natural Science Fund of China(Grant Nos.61875138,61435010,and 61961136001)Science and Technology Innovation Commission of Shenzhen(KQJSCX20180328095501798,JCYJ20180507182047316,KQTD2015032416270385,JCYJ20170811093453105,JCYJ20180307164612205 and GJHZ20180928160209731)+1 种基金Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(2018B030306038)Natural Science Foundation of SZU(No.860-000002110429).
文摘Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and photoresponse among others show great potential for various applications.These include photodetectors,field-effect transistors,piezoelectric devices,modulators,and energy harvesting devices.However,as a new member of the 2D material family,much less known is about 2D Te compared to other 2D materials.Motivated by this lack of knowledge,we review the recent progress of research into 2D Te nanoflakes.Firstly,we introduce the background and motivation of this review.Then,the crystal structures and synthesis methods are presented,followed by an introduction to their physical properties and applications.Finally,the challenges and further development directions are summarized.We believe that milestone investigations of 2D Te nanoflakes will emerge soon,which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.
文摘The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, sodium thiosulphate pentahydrate is employed as phase change material and it is stored in stainless steel capsules. These capsules are kept in fabricated tank and hot water is supplied into it. The experimental design is prepared by considering the parameters: flow rate, heat transfer fluid inlet temperature and PCM capsule shape. Experiments are conducted according to the experimental design and responses are recorded. The effect of selected parameters on TES using PCM is studied by analyzing experimental data. The experimental data are also analyzed using Fuzzy Logic to find the optimal values of flow rate, heat transfer fluid inlet temperature and PCM capsule shapes. The present work utilizes Fuzzy Logic to find the optimal parameters for designing the effective Thermal Energy Storage System (TES).