A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy cont...The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.展开更多
Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power pla...Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,展开更多
A new intelligent control scheme for hot strip coiling temperature is presented. In this scheme, the prediction mode1 of finishing temperature and the presetting model of main cooling zone are establish based on BP ne...A new intelligent control scheme for hot strip coiling temperature is presented. In this scheme, the prediction mode1 of finishing temperature and the presetting model of main cooling zone are establish based on BP neural network, the feed-forward open-loop control model of main cooling zone is constructed based on T-S fuzzy neural network, a new improved structure of T-S fuzzy neural network is developed, and the feedback close-loop control model of precision cooling zone is obtained based on fuzzy control. The effectiveness of the proposed scheme has been demonstrated by computer simulation with a satisfactory result.展开更多
In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems a...In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.展开更多
Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artifi...Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artificial intelligent fuzzy control algorithm is put forward in this paper. Through adjusting the on-off ratio of electric heating elements, the temperature in furnace is controlled accurately. This paper describes structure and qualities of the large-scale standing quench furnace briefly, introduces constitution of control system, and expounds principle and implementation of intelligent control algorithm. The applied results prove that the intelligent control system can completely satisfy the technological requirements. Namely, it can realize fast increasing temperature with a little overshoot, exact holding temperature, and well-distributed temperature in quench furnace. It has raised the output and quality of aluminum material, and brought the outstanding economic and social benefits.展开更多
Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical mode...Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical model of the zone, the fan, the heating coil and sensor are built. HVAC is a non-linear, strong disturbance and coupling system. Linear active-rejection-disturbance-control is an appreciate control algorithm which can adapt to less information, strong-disturbance influence, and has relative-fixed structure and simple tuning process of the controller parameters. Active-rejection-disturbance-control of the HVAC system is proposed. Simulation in Matlab/Simulink was done. Simulation results show that linear active-rejection-disturbance-control was prior to PID and integral-fuzzy controllers in rising time, overshoot and response time of step disturbance. The study can provide fundamental basis for the control of the air-condition system with strong-disturbance and high-precision needed.展开更多
Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digital...Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.展开更多
In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperatur...In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.展开更多
A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to d...A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to discuss the design of fuzzy controller using common microprogrammed control unit (MCU) in detail. Based on fuzzy theory the query control tables fixed in read only memory (ROM) of MCU are established to realize the energy saving in the room temperature controller and the reasoning procedure is analyzed. The diagram of hardware design and the flow chart of software of room temperature controller are presented. The results show that the proposed method is practical and effective to achieve the energy saving goal.展开更多
This paper tried to analyse and verify the fuzzy adaptive control strategy of electronic control air suspension system for heavy truck. Created the seven-freedoms vehicle suspension model, and the road input model; wi...This paper tried to analyse and verify the fuzzy adaptive control strategy of electronic control air suspension system for heavy truck. Created the seven-freedoms vehicle suspension model, and the road input model; with Matlab/Simulink toolboxes and modules, built dynamical system simulation model for heavy truck with air suspension, fuzzy adaptive control model, height control model for air spring, and intelligent control and analyse on root mean square value of acceleration of gravity center of the vehicle under excitation of road. Results show that the fuzzy control had less help to the body vibration on the better pavement, but had the better benefit on the bad road, and the vehicle’s root mean square value of acceleration of gravity center is less than passive suspension’s obviously.展开更多
The main objective of this study is the control of the agricultural greenhouse in view of the economic interest generated by such an activity. A simulation model is developed, gathering all the external and internal c...The main objective of this study is the control of the agricultural greenhouse in view of the economic interest generated by such an activity. A simulation model is developed, gathering all the external and internal climatic conditions that influence the microclimate of the greenhouse to predict the temporal evolution of the state variables characterizing this microclimate. The fuzzy control is an alternative to the approaches proposed by the automatic for the control of complex systems. The performance objectives of the looped systems and the corresponding actions are summarized in the form of rules of expertise, which are spelled out in plain language. This technique thus makes it possible to dispense with the use of mathematical models which are sometimes difficult to obtain. Our objective is the multivariable strategy synthesis and the fuzzy application to a multivariate system (MIMO ~ such as the agricultural greenhouse.) First, the principles of fuzzy logic and fuzzy control are recalled. The origins of non-Linearitys of the command are explained. One of the practical problems of this technique is the combinatorial explosion of the rule base when the number of variables involved becomes large. A solution to simplify the complexity of the system is presented together with an optimization algorithm to automatically adjust the parameters of the fuzzy controller. The last part is devoted to the synthesis of an optimal control of the greenhouse in order to compare it to the fuzzy control implemented.展开更多
Precision plastic lenses often exhibit dimensional deviations due to the thermal expansion of the mold during injection molding.Although this deviation is smaller in micron-sized(1–5μm)lenses,it exceeds the toleranc...Precision plastic lenses often exhibit dimensional deviations due to the thermal expansion of the mold during injection molding.Although this deviation is smaller in micron-sized(1–5μm)lenses,it exceeds the tolerance requirement of such lenses.It is difficult to resolve this dimensional issue by using injection molding parameters(e.g.,melt temperature,injection speed,and hold pressure).In this study,the thermal analysis of a mold was conducted,and it was confirmed that the deviation of lens dimension was caused by the thermal instability and thermal expansion of the mold.Due to the inconsistent heat distribution of the fixed and the movable side of the mold,the position of the location system was displaced approximately 1 to 5μm.In this study,thermal compensation technology for this the mold was investigated.The temperature on both sides of the mold was measured,and mold temperature could be adjusted automatically using a control strategy based on fuzzy theory.During the mold preheating or mass production stage,the temperature on both sides of the mold could be easily adjusted to quickly obtain the required temperature range.The dilatation on both sides of the mold was revised to improve the alignment accuracy of the cavity,and the decenter error of these injection lenses was reduced to 1μm.This technology can markedly improve the production yield and efficiency of plastic products requiring an extremely high dimensional accuracy.展开更多
A double level multi variable controller, which is designed to regulate the temperature of sea water, is applied into a new kind of sea water still.An algorithm of the controller adopting the theory of fuzzy control...A double level multi variable controller, which is designed to regulate the temperature of sea water, is applied into a new kind of sea water still.An algorithm of the controller adopting the theory of fuzzy control is processed computationally via hardware. According to the results of operation and test upon the spot, the advantages for this controlling system, namely, rapid response, high precision, and good reliability, are obtained.展开更多
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.
基金This work was supported by the Natural Science Foundation of Beijing (No. 4062030)National Natural Science Foundation of China (No. 50576022,69804003)Scientific Research Common Program of Beijing Municipal Commission of Education (KM200611232007).
文摘Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,
文摘A new intelligent control scheme for hot strip coiling temperature is presented. In this scheme, the prediction mode1 of finishing temperature and the presetting model of main cooling zone are establish based on BP neural network, the feed-forward open-loop control model of main cooling zone is constructed based on T-S fuzzy neural network, a new improved structure of T-S fuzzy neural network is developed, and the feedback close-loop control model of precision cooling zone is obtained based on fuzzy control. The effectiveness of the proposed scheme has been demonstrated by computer simulation with a satisfactory result.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA04Z346) , the National Natural Science Foundation of China ( No. 50905094) and China Postdoctoral Science Foundation ( No. 20080440378, 200902097).
文摘In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.
基金Supported by The National Natural Science Foundation of China (No. 59835170).
文摘Considering some characteristics of large-scale standing quench furnace, such as great heat inertia, evident time lag, strong coupling influence, hard to establish exact mathematical models of plant and etc, an artificial intelligent fuzzy control algorithm is put forward in this paper. Through adjusting the on-off ratio of electric heating elements, the temperature in furnace is controlled accurately. This paper describes structure and qualities of the large-scale standing quench furnace briefly, introduces constitution of control system, and expounds principle and implementation of intelligent control algorithm. The applied results prove that the intelligent control system can completely satisfy the technological requirements. Namely, it can realize fast increasing temperature with a little overshoot, exact holding temperature, and well-distributed temperature in quench furnace. It has raised the output and quality of aluminum material, and brought the outstanding economic and social benefits.
文摘Heating, ventilation, and air conditioning (HVAC) system is significant to the energy efficiency in buildings. In this paper, temperature control of HVAC system is studied in winter operation season. The physical model of the zone, the fan, the heating coil and sensor are built. HVAC is a non-linear, strong disturbance and coupling system. Linear active-rejection-disturbance-control is an appreciate control algorithm which can adapt to less information, strong-disturbance influence, and has relative-fixed structure and simple tuning process of the controller parameters. Active-rejection-disturbance-control of the HVAC system is proposed. Simulation in Matlab/Simulink was done. Simulation results show that linear active-rejection-disturbance-control was prior to PID and integral-fuzzy controllers in rising time, overshoot and response time of step disturbance. The study can provide fundamental basis for the control of the air-condition system with strong-disturbance and high-precision needed.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 59908001)Multidiscipline Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. MD200030)
文摘Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.
文摘In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.
文摘A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to discuss the design of fuzzy controller using common microprogrammed control unit (MCU) in detail. Based on fuzzy theory the query control tables fixed in read only memory (ROM) of MCU are established to realize the energy saving in the room temperature controller and the reasoning procedure is analyzed. The diagram of hardware design and the flow chart of software of room temperature controller are presented. The results show that the proposed method is practical and effective to achieve the energy saving goal.
文摘This paper tried to analyse and verify the fuzzy adaptive control strategy of electronic control air suspension system for heavy truck. Created the seven-freedoms vehicle suspension model, and the road input model; with Matlab/Simulink toolboxes and modules, built dynamical system simulation model for heavy truck with air suspension, fuzzy adaptive control model, height control model for air spring, and intelligent control and analyse on root mean square value of acceleration of gravity center of the vehicle under excitation of road. Results show that the fuzzy control had less help to the body vibration on the better pavement, but had the better benefit on the bad road, and the vehicle’s root mean square value of acceleration of gravity center is less than passive suspension’s obviously.
文摘The main objective of this study is the control of the agricultural greenhouse in view of the economic interest generated by such an activity. A simulation model is developed, gathering all the external and internal climatic conditions that influence the microclimate of the greenhouse to predict the temporal evolution of the state variables characterizing this microclimate. The fuzzy control is an alternative to the approaches proposed by the automatic for the control of complex systems. The performance objectives of the looped systems and the corresponding actions are summarized in the form of rules of expertise, which are spelled out in plain language. This technique thus makes it possible to dispense with the use of mathematical models which are sometimes difficult to obtain. Our objective is the multivariable strategy synthesis and the fuzzy application to a multivariate system (MIMO ~ such as the agricultural greenhouse.) First, the principles of fuzzy logic and fuzzy control are recalled. The origins of non-Linearitys of the command are explained. One of the practical problems of this technique is the combinatorial explosion of the rule base when the number of variables involved becomes large. A solution to simplify the complexity of the system is presented together with an optimization algorithm to automatically adjust the parameters of the fuzzy controller. The last part is devoted to the synthesis of an optimal control of the greenhouse in order to compare it to the fuzzy control implemented.
文摘Precision plastic lenses often exhibit dimensional deviations due to the thermal expansion of the mold during injection molding.Although this deviation is smaller in micron-sized(1–5μm)lenses,it exceeds the tolerance requirement of such lenses.It is difficult to resolve this dimensional issue by using injection molding parameters(e.g.,melt temperature,injection speed,and hold pressure).In this study,the thermal analysis of a mold was conducted,and it was confirmed that the deviation of lens dimension was caused by the thermal instability and thermal expansion of the mold.Due to the inconsistent heat distribution of the fixed and the movable side of the mold,the position of the location system was displaced approximately 1 to 5μm.In this study,thermal compensation technology for this the mold was investigated.The temperature on both sides of the mold was measured,and mold temperature could be adjusted automatically using a control strategy based on fuzzy theory.During the mold preheating or mass production stage,the temperature on both sides of the mold could be easily adjusted to quickly obtain the required temperature range.The dilatation on both sides of the mold was revised to improve the alignment accuracy of the cavity,and the decenter error of these injection lenses was reduced to 1μm.This technology can markedly improve the production yield and efficiency of plastic products requiring an extremely high dimensional accuracy.
文摘A double level multi variable controller, which is designed to regulate the temperature of sea water, is applied into a new kind of sea water still.An algorithm of the controller adopting the theory of fuzzy control is processed computationally via hardware. According to the results of operation and test upon the spot, the advantages for this controlling system, namely, rapid response, high precision, and good reliability, are obtained.