This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear...This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.展开更多
This paper investigates the problem of event-triggered H∞state estimation for Takagi-Sugeno (T-S) fuzzy affine systems. The objective is to design an event-triggered scheme and an observer such that the resulting est...This paper investigates the problem of event-triggered H∞state estimation for Takagi-Sugeno (T-S) fuzzy affine systems. The objective is to design an event-triggered scheme and an observer such that the resulting estimation error system is asymptotically stable with a prescribed H∞performance and at the same time unnecessary output measurement transmission can be reduced. First, an event-triggered scheme is proposed to determine whether the sampled measurements should be transmitted or not. The output measurements, which trigger the condition, are supposed to suffer a network-induced time-varying and bounded delay before arriving at the observer. Then, by adopting the input delay method, the estimation error system can be reformulated as a piecewise delay system. Based on the piecewise Lyapunov-Krasovskii functional and the Finsler's lemma, the event-triggered H∞observer design method is developed. Moreover, an algorithm is proposed to co-design the observer gains and the event-triggering parameters to guarantee that the estimation error system is asymptotically stable with a given disturbance attenuation level and the signal transmission rate is reduced as much as possible. Simulation studies are given to show the effectiveness of the proposed method.展开更多
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, ...The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
In this paper, a class of fuzzy BAM neural networks with time varying delays is discussed. By using the properties of M-matrix, Linear Matrix Inequality(LMI) approach and general Lyapunov-Krasovskii functional, some...In this paper, a class of fuzzy BAM neural networks with time varying delays is discussed. By using the properties of M-matrix, Linear Matrix Inequality(LMI) approach and general Lyapunov-Krasovskii functional, some new sufficient conditions are derived to ensure the existence of periodic solutions and the global exponential stability of the fuzzy BAM neural networks with time varying delays. These results have important significance in the design of global exponential stable BAM networks with delays. Moreover, an example is given to illustrate that the conditions of the results in the paper are feasible.展开更多
In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approxi...In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.展开更多
A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP sh...A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.展开更多
文摘This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.
基金Research Grants Council of the Hong Kong Special Administrative Region of China (No. CityU-11211818)the Self-Planned Task of State Key Laboratory of Robotics and Systems of Harbin Institute of Technology (No. SKLRS201801A03)the National Natural Science Foundation of China (No. 61873311).
文摘This paper investigates the problem of event-triggered H∞state estimation for Takagi-Sugeno (T-S) fuzzy affine systems. The objective is to design an event-triggered scheme and an observer such that the resulting estimation error system is asymptotically stable with a prescribed H∞performance and at the same time unnecessary output measurement transmission can be reduced. First, an event-triggered scheme is proposed to determine whether the sampled measurements should be transmitted or not. The output measurements, which trigger the condition, are supposed to suffer a network-induced time-varying and bounded delay before arriving at the observer. Then, by adopting the input delay method, the estimation error system can be reformulated as a piecewise delay system. Based on the piecewise Lyapunov-Krasovskii functional and the Finsler's lemma, the event-triggered H∞observer design method is developed. Moreover, an algorithm is proposed to co-design the observer gains and the event-triggering parameters to guarantee that the estimation error system is asymptotically stable with a given disturbance attenuation level and the signal transmission rate is reduced as much as possible. Simulation studies are given to show the effectiveness of the proposed method.
文摘The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
基金Supported by the National Natural Science Foundation of China (60574043)the Science Foundation of the Education Committee of Hunan Province (06C792+1 种基金07C700)the Construction Program of Key Disciplines in Hunan Province,Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan province
文摘In this paper, a class of fuzzy BAM neural networks with time varying delays is discussed. By using the properties of M-matrix, Linear Matrix Inequality(LMI) approach and general Lyapunov-Krasovskii functional, some new sufficient conditions are derived to ensure the existence of periodic solutions and the global exponential stability of the fuzzy BAM neural networks with time varying delays. These results have important significance in the design of global exponential stable BAM networks with delays. Moreover, an example is given to illustrate that the conditions of the results in the paper are feasible.
基金supported by National Natural Science Foundation of China (Nos. 60974139 and 60804021)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China(No.51579114)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)the Project of Young and Middle-Aged Teacher Education of Fujian Province(No.JAT170309)
文摘A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.