In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ...In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).展开更多
The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic a...The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry. A back-propagation artificial neural network with one input node and three export nodes was constructed, which could forecaste three speciations of heavy metals simultaneously. In the learning sample set, the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis. The average relative errors of the three speciations of Cu, Zn, Fe or Mn from 100 geo-chemical samples were less than 5%. The relative standard deviations of the three speciations of each of four heavy metals were 0.008%―4.43%.展开更多
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m...The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.展开更多
Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests ...Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests forecasting using the method of neural network based on fuzzy clustering was proposed in this experiment. The simulation results demonstrated that the method was simple and practical and could forecast pests fast and accurately, particularly, the method could obtain good results with few samples and samples correlation.展开更多
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a...Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
A method for predicting the five species contents of cadmium was developed by combining the back-propagation artificial neural network with graphite furnace atomic absorption spectrometry(BP-ANN-GF-AAS).Based on the...A method for predicting the five species contents of cadmium was developed by combining the back-propagation artificial neural network with graphite furnace atomic absorption spectrometry(BP-ANN-GF-AAS).Based on the strong learning function and the features of the information distributed storage of artificial neural network(ANN),a single ANN was constituted in which only one determination point of every sample was required.The exchangeable,carbonated,Fe-Mn oxidable,organic and residual species of cadmium for 20 kinds of soil samples from the two sections of Changchun(China) were determined by BP-ANN-GF-AAS.The detection limit of the method is 0.024 μg/L and the limit of quantification is 0.080 μg/L.t-Test indicates that there is not any systemic error of the results obtained by the Tessier sequential extraction graphite furnace atomic absorption spectrometry method(Tessier-GF-AAS) and BP-ANN-GF-AAS.Compared with those of the Tessier-GF-AAS,the prediction errors of BP-ANN-GF-AAS are less than 10%.The proposed method is fast,convenient,sensitive,and can eliminate the interference among various species.展开更多
This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into differe...This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.展开更多
In cluster science, it is challenging to identify the ground state structures(GSS) of gold(Au) clusters. Among different search approaches, first-principles method based on density functional theory(DFT) is the most r...In cluster science, it is challenging to identify the ground state structures(GSS) of gold(Au) clusters. Among different search approaches, first-principles method based on density functional theory(DFT) is the most reliable one with high precision. However, as the cluster size increases, it requires more expensive computational cost and becomes impracticable.In this paper, we have developed an artificial neural network(ANN) potential for Au clusters, which is trained to the DFT binding energies and forces of 9000 Au N clusters(11 ≤ N ≤ 100). The root mean square errors of energy and force are 13.4 meV/atom and 0.4 eV/A, respectively. We demonstrate that the ANN potential has the capacity to differentiate the energy level of Au clusters and their isomers and highlight the need to further improve the accuracy. Given its excellent transferability, we emphasis that ANN potential is a promising tool to breakthrough computational bottleneck of DFT method and effectively accelerate the pre-screening of Au clusters’ GSS.展开更多
With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzz...With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzzy clustering theory and deep neural network. The focus of data mining in seeking the visualization methods in the process of data mining, knowledge discovery process can be users to understand, to facilitate human-computer interaction in knowledge discovery process. Inspired by the brain structure layers, neural network researchers have been trying to multilayer neural network research. The experiment result shows that out algorithm is effective and robust.展开更多
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform...Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.展开更多
This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ...This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ANN is developed considering the fault generation phenomenon during software testing with the fault complexity of different levels. We demonstrate the proposed model considering three types of faults residing in the software. We propose a neighborhood based fuzzy PSO algorithm for competent learning of the proposed ANN using software failure data. Fitting and prediction performances of the neighborhood fuzzy PSO based proposed neural network model are compared with the standard PSO based proposed neural network model and existing ANN based software reliability models in the literature through three real software failure data sets. We also compare the performance of the proposed PSO algorithm with the standard PSO algorithm through learning of the proposed ANN. Statistical analysis shows that the neighborhood fuzzy PSO based proposed neural network model has comparatively better fitting and predictive ability than the standard PSO based proposed neural network model and other ANN based software reliability models. Faster release of software is achievable by applying the proposed PSO based neural network model during the testing period.展开更多
It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the k...It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network(TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods.展开更多
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the le...Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm.展开更多
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto...This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications.展开更多
Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors...Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.展开更多
FAM(Fuzzy Associative Memory) Network Model, FAM Adaptive Learning Algorithm and Principal of FAM Inference Machine are introduced, and successfully application to ″New Generation Expert System for Earthquake Predict...FAM(Fuzzy Associative Memory) Network Model, FAM Adaptive Learning Algorithm and Principal of FAM Inference Machine are introduced, and successfully application to ″New Generation Expert System for Earthquake Prediction″ (NGESEP). This system has good function for knowledge learning without disadvantages of neural network, which the learned knowledge implied in network is difficult to be understood or interpreted by expert system.展开更多
Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expen...Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expensive and difficult to maintain,and have a short operation period and difficult to maintain.This study developed a scientific and accurate method for prediction of DO content changes using fish school features.The behavioral features of the Carassius auratus fish school were described using two-dimensional fish school images.The degree of DO content decline was graded into five levels,and the corresponding numerical ranges of cluster characteristic parameters were determined by considering the opinions of ichthyologists.Finally,the variation of DO content was predicted using the characteristic parameters of the fish school and the multiple-input single-output Takagi-Sugeno fuzzy neural network.The prediction results were basically consistent with the actual variations of DO content.Therefore,it is feasible to use the behavioral features of the fish school to dynamically predict the level of DO content in water,and this method is especially suitable for prediction of sharp decline of DO content in a relatively short time.展开更多
文摘In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).
基金Supported by the National Natural Science Foundation of China(No.29975004)
文摘The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry. A back-propagation artificial neural network with one input node and three export nodes was constructed, which could forecaste three speciations of heavy metals simultaneously. In the learning sample set, the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis. The average relative errors of the three speciations of Cu, Zn, Fe or Mn from 100 geo-chemical samples were less than 5%. The relative standard deviations of the three speciations of each of four heavy metals were 0.008%―4.43%.
文摘The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.
基金Supported by Guangxi Science Research and Technology Explora-tion Plan Project(0815001-10)~~
文摘Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests forecasting using the method of neural network based on fuzzy clustering was proposed in this experiment. The simulation results demonstrated that the method was simple and practical and could forecast pests fast and accurately, particularly, the method could obtain good results with few samples and samples correlation.
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
文摘Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
基金Supported by the Fund of the State Key Laboratory of Electroanalytical Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences
文摘A method for predicting the five species contents of cadmium was developed by combining the back-propagation artificial neural network with graphite furnace atomic absorption spectrometry(BP-ANN-GF-AAS).Based on the strong learning function and the features of the information distributed storage of artificial neural network(ANN),a single ANN was constituted in which only one determination point of every sample was required.The exchangeable,carbonated,Fe-Mn oxidable,organic and residual species of cadmium for 20 kinds of soil samples from the two sections of Changchun(China) were determined by BP-ANN-GF-AAS.The detection limit of the method is 0.024 μg/L and the limit of quantification is 0.080 μg/L.t-Test indicates that there is not any systemic error of the results obtained by the Tessier sequential extraction graphite furnace atomic absorption spectrometry method(Tessier-GF-AAS) and BP-ANN-GF-AAS.Compared with those of the Tessier-GF-AAS,the prediction errors of BP-ANN-GF-AAS are less than 10%.The proposed method is fast,convenient,sensitive,and can eliminate the interference among various species.
基金This project was supported by National Natural Science Foundation of China
文摘This paper advances a new approach based on wavelet and wavelet packet transforms in tandem with a fuzzy cluster neural network,abbreviated WPFCNN.Wavelets and wavelet packets decompose a vibration signal into different bands at different levels and provides multiresolution or multiscale views of a signal which is stationary or nonstationary. Fuzzy mathematics processes uncertain problems in engineering and converts the attributes extracted by wavelet packets to fuzzy membership degree.To achieve self-organizing classification,the MAXNET neural network is employed.WPFCNN integrates the advantages of wavelet packets and fuzzy cluster with MAXNET.The approach is adopted to process and classify vibration signal of a NH_3 compressor in a petrochemical plant.The results indicate that it is a useful and effective intelligence classification in the field of condition monitoring and fault diagnosis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804175,11874033,11804076,and 91961204)the K.C.Wong Magna Foundation in Ningbo University.
文摘In cluster science, it is challenging to identify the ground state structures(GSS) of gold(Au) clusters. Among different search approaches, first-principles method based on density functional theory(DFT) is the most reliable one with high precision. However, as the cluster size increases, it requires more expensive computational cost and becomes impracticable.In this paper, we have developed an artificial neural network(ANN) potential for Au clusters, which is trained to the DFT binding energies and forces of 9000 Au N clusters(11 ≤ N ≤ 100). The root mean square errors of energy and force are 13.4 meV/atom and 0.4 eV/A, respectively. We demonstrate that the ANN potential has the capacity to differentiate the energy level of Au clusters and their isomers and highlight the need to further improve the accuracy. Given its excellent transferability, we emphasis that ANN potential is a promising tool to breakthrough computational bottleneck of DFT method and effectively accelerate the pre-screening of Au clusters’ GSS.
文摘With the progress of computer technology, data mining has become a hot research area in the computer science community. In this paper, we undertake theoretical research on the novel data mining algorithm based on fuzzy clustering theory and deep neural network. The focus of data mining in seeking the visualization methods in the process of data mining, knowledge discovery process can be users to understand, to facilitate human-computer interaction in knowledge discovery process. Inspired by the brain structure layers, neural network researchers have been trying to multilayer neural network research. The experiment result shows that out algorithm is effective and robust.
文摘Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM.
基金supported by the Council of Scientific and Industrial Research of India(09/028(0947)/2015-EMR-I)
文摘This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ANN is developed considering the fault generation phenomenon during software testing with the fault complexity of different levels. We demonstrate the proposed model considering three types of faults residing in the software. We propose a neighborhood based fuzzy PSO algorithm for competent learning of the proposed ANN using software failure data. Fitting and prediction performances of the neighborhood fuzzy PSO based proposed neural network model are compared with the standard PSO based proposed neural network model and existing ANN based software reliability models in the literature through three real software failure data sets. We also compare the performance of the proposed PSO algorithm with the standard PSO algorithm through learning of the proposed ANN. Statistical analysis shows that the neighborhood fuzzy PSO based proposed neural network model has comparatively better fitting and predictive ability than the standard PSO based proposed neural network model and other ANN based software reliability models. Faster release of software is achievable by applying the proposed PSO based neural network model during the testing period.
基金Supported by the National Natural Science Foundation of China(61203099,61034008,61225016)Beijing Science and Technology Project(Z141100001414005)+3 种基金Beijing Science and Technology Special Project(Z141101004414058)Ph.D.Program Foundation from Ministry of Chinese Education(20121103120020)Beijing Nova Program(Z131104000413007)Hong Kong Scholar Program(XJ2013018)
文摘It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network(TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.
文摘Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm.
文摘This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications.
文摘Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.
文摘FAM(Fuzzy Associative Memory) Network Model, FAM Adaptive Learning Algorithm and Principal of FAM Inference Machine are introduced, and successfully application to ″New Generation Expert System for Earthquake Prediction″ (NGESEP). This system has good function for knowledge learning without disadvantages of neural network, which the learned knowledge implied in network is difficult to be understood or interpreted by expert system.
基金supported by the Natural Science Foundation of Changzhou City,China(Grants No.CE20195026 and CE20205031)the Teaching Steering Committee of Electronics Information Specialty in Colleges and Universities of the Ministry of Education(Grant No.2020-YB-42)the Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle Aged Teachers and Presidents.
文摘Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expensive and difficult to maintain,and have a short operation period and difficult to maintain.This study developed a scientific and accurate method for prediction of DO content changes using fish school features.The behavioral features of the Carassius auratus fish school were described using two-dimensional fish school images.The degree of DO content decline was graded into five levels,and the corresponding numerical ranges of cluster characteristic parameters were determined by considering the opinions of ichthyologists.Finally,the variation of DO content was predicted using the characteristic parameters of the fish school and the multiple-input single-output Takagi-Sugeno fuzzy neural network.The prediction results were basically consistent with the actual variations of DO content.Therefore,it is feasible to use the behavioral features of the fish school to dynamically predict the level of DO content in water,and this method is especially suitable for prediction of sharp decline of DO content in a relatively short time.