期刊文献+
共找到2,570篇文章
< 1 2 129 >
每页显示 20 50 100
INDUCTION MOTOR SPEED CONTROL SYSTEM BASED ON FUZZY NEURAL NETWORK 被引量:1
1
作者 徐小增 李叶松 秦忆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期195-199,共5页
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin... A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness. 展开更多
关键词 induction motor fuzzy neural network vector control speed control system
下载PDF
Fuzzy Control System of Hydraulic Roll Bending Based on Genetic Neural Network 被引量:2
2
作者 JIAChun-yu LIUHong-min ZHOUHui-feng 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第3期22-27,共6页
For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system ... For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully, and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy. 展开更多
关键词 genetic algorithm neural network fuzzy control hydraulic roll bending SHAPE
下载PDF
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks 被引量:2
3
作者 Shao-Cheng Tong Yong-Ming Li 《International Journal of Automation and computing》 EI 2009年第2期145-153,共9页
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ... In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Nonlinear systems backstepping control adaptive fuzzy neural networks control state observer output feedback control.
下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
4
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 fuzzy logic neural networks Adaptive control Nonlinear dynamic system.
下载PDF
FUZZY NEURAL NETWORK CONTROL FOR VIBRATION WAVEFORM SYSTEM OF MOLD 被引量:1
5
作者 GaoPu LiYunhua ShengWanxing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期472-476,共5页
Combining with the characteristic of the fuzzy control and the neural networkcontrol(NNC), a new kind of the fuzzy neural network controller is proposed, and the synthesisdesign method of the control law and fast spee... Combining with the characteristic of the fuzzy control and the neural networkcontrol(NNC), a new kind of the fuzzy neural network controller is proposed, and the synthesisdesign method of the control law and fast speed learning algorithm of the parameters of networks areput forward. The output of the controller is composed of two parts, part one is derived on basis ofthe principle of sliding control, the lower order model and the estimated parameters of the plantare only required, part two is derived on basis FNN, it is used to compensate the uncertainties ofthe systems. Because new type of FNN controller extracts from the advantages of the intelligentcontrol and model based sliding mode control, the numbers of adjusting parameters and the structureof FNN are simplified at large, and the practical significance and variation range are attached toeach layer of the network and its connected weights, the control performance and learning speed areincreased at large. The Tightness of the conclusions is verified by the experiment of anelectro-hydraulic position servo system of the mold of the continuous casting machinery. 展开更多
关键词 fuzzy control neural networks Sliding mode control Electro-hydraulic servosystem
下载PDF
The Fuzzy Neural Network Control Scheme With H∞ Tracking Characteristic of Space Robot System With Dual-arm After Capturing a Spin Spacecraft 被引量:1
6
作者 Jing Cheng Li Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1417-1424,共8页
In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f... In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results. 展开更多
关键词 Capturing operation calm motion control closed chain system dual-arm space robot recurrent fuzzy neural network H∞tracking characteristic
下载PDF
A fuzzy control and neural network based rotor speed controller for maximum power point tracking in permanent magnet synchronous wind power generation system 被引量:1
7
作者 Min Ding Zili Tao +3 位作者 Bo Hu Meng Ye Yingxiong Ou Ryuichi Yokoyama 《Global Energy Interconnection》 EI CSCD 2023年第5期554-566,共13页
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer... When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation. 展开更多
关键词 Maximum wind power tracking fuzzy control neural network
下载PDF
Fault-Tolerant Control of Nonlinear Systems Based on Fuzzy Neural Networks 被引量:1
8
作者 左东升 姜建国 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期634-638,共5页
Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tole... Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance. 展开更多
关键词 fuzzy neural networks nonlinear system fault-tolerant control ADAPTIVE
下载PDF
Hybrid Power Systems Energy Controller Based on Neural Network and Fuzzy Logic 被引量:2
9
作者 Emad M. Natsheh Alhussein Albarbar 《Smart Grid and Renewable Energy》 2013年第2期187-197,共11页
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto... This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications. 展开更多
关键词 Artificial neural network Energy Management fuzzy control Hybrid POWER systems MAXIMUM POWER Point TRACKER Modeling
下载PDF
Fuzzy Control Based on Neural Networks for Armored Vehicle Electric Drive System 被引量:1
10
作者 马晓军 李华 +1 位作者 张剑 张豫南 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第3期169-172,共4页
关键词 装甲车 电力驱动 模糊控制 神经网络 鲁棒性
下载PDF
Rotation Angle Control Strategy for Telescopic Flexible Manipulator Based on a Combination of Fuzzy Adjustment and RBF Neural Network 被引量:6
11
作者 Dongyang Shang Xiaopeng Li +2 位作者 Meng Yin Fanjie Li Bangchun Wen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期203-226,共24页
The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.W... The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles. 展开更多
关键词 Flexible manipulator RBF neural network fuzzy control Dynamic uncertainty
下载PDF
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
12
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 Artificial neural network fuzzy logic control Weld pool depth Seamtracking
下载PDF
Fuzzy neural network control of underwater vehicles based on desired state programming 被引量:6
13
作者 LIANG Xiao LI Ye XU Yu-ru WAN Lei QIN Zai-bai 《Journal of Marine Science and Application》 2006年第3期1-4,共4页
Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was pr... Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value. 展开更多
关键词 underwater vehicle motion control fuzzy neural network desired state programming
下载PDF
Adaptive control of parallel manipulators via fuzzy-neural network algorithm 被引量:3
14
作者 Dachang ZHU Yuefa FANG 《控制理论与应用(英文版)》 EI 2007年第3期295-300,共6页
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u... This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 展开更多
关键词 Parallel manipulator Adaptive control fuzzy neural network algorithm SIMULATION
下载PDF
Transient Air-Fuel Ratio Control in a CNG Engine Using Fuzzy Neural Networks 被引量:2
15
作者 李国岫 张欣 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期100-103,共4页
The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) ... The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) to construct a feedforward/feedback control scheme to regulate the air-fuel ratio. Using fuzzy neural networks, a fuzzy neural hybrid controller is obtained based on PI controller. The new controller, which can adjust parameters online, has been tested in transient air-fuel ratio control of a CNG engine. 展开更多
关键词 air-fuel (A/F) ratio fuzzy neural network hybrid controller
下载PDF
Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control 被引量:1
16
作者 M. Kalpana P. Balasubramaniam 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期564-573,共10页
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d... We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results. 展开更多
关键词 stochastic asymptotical synchronization fuzzy cellular neural networks chaotic Markovian jumping parameters sampled-data control
下载PDF
HPSO-based fuzzy neural network control for AUV 被引量:1
17
作者 Lei ZHANG Yongjie PANG Yumin SU Yannan LIANG 《控制理论与应用(英文版)》 EI 2008年第3期322-326,共5页
A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimiz... A fuzzy neural network controller for underwater vehicles has many parameters difficult to tune manually. To reduce the numerous work and subjective uncertainties in manual adjustments, a hybrid particle swarm optimization (HPSO) algorithm based on immune theory and nonlinear decreasing inertia weight (NDIW) strategy is proposed. Owing to the restraint factor and NDIW strategy, an HPSO algorithm can effectively prevent premature convergence and keep balance between global and local searching abilities. Meanwhile, the algorithm maintains the ability of handling multimodal and multidimensional problems. The HPSO algorithm has the fastest convergence velocity and finds the best solutions compared to GA, IGA, and basic PSO algorithm in simulation experiments. Experimental results on the AUV simulation platform show that HPSO-based controllers perform well and have strong abilities against current disturbance. It can thus be concluded that the proposed algorithm is feasible for application to AUVs. 展开更多
关键词 Autonomous underwater vehicle fuzzy neural network Model reference adaptive control Particle swarm optimization algorithm Immune theory
下载PDF
Inverse Control of Cable-driven Parallel Mechanism Using Type-2 Fuzzy Neural Network 被引量:9
18
作者 LI Cheng-Dong YI Jian-Qiang YU Yi ZHAO Dong-Bin 《自动化学报》 EI CSCD 北大核心 2010年第3期459-464,共6页
关键词 机器人 数学模型 最小二乘法 动力学
下载PDF
Strip Thickness Control of Cold Rolling Mill with Roll Eccentricity Compensation by Using Fuzzy Neural Network 被引量:2
19
作者 Waleed I. Hameed Khearia A. Mohamad 《Engineering(科研)》 2014年第1期27-33,共7页
In rolling mill, the accuracy and quality of the strip exit thickness are very important factors. To realize high accuracy in the strip exit thickness, the Automatic Gauge Control (AGC) system is used. Because of roll... In rolling mill, the accuracy and quality of the strip exit thickness are very important factors. To realize high accuracy in the strip exit thickness, the Automatic Gauge Control (AGC) system is used. Because of roll eccentricity in backup rolls, the exit thickness deviates periodically. In this paper, we design PI controller in outer loop for the strip exit thickness while PD controller is used in inner loop for the work roll actuator position. Also, in order to reduce the periodic thickness deviation, we propose roll eccentricity compensation by using Fuzzy Neural Network with online tuning. Simulink model for the overall system has been implemented using MATLAB/SIMULINK software. The simulation results show the effectiveness of the proposed control. 展开更多
关键词 Cold Rolling MILL Thickness control ROLL ECCENTRICITY fuzzy neural network ECCENTRICITY COMPENSATION
下载PDF
Intelligent Flow Control Technique of ABR Service in ATM Networks Based on Fuzzy Neural Networks 被引量:7
20
作者 Zhang Liangjie Li Yanda Li Qinghua Wang Pu (Dept of Automation, Tsinghua University, Beijing 100084) 《通信学报》 EI CSCD 北大核心 1997年第3期3-9,共7页
InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQing... InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQinghuaWangPu(DeptofA... 展开更多
关键词 模糊神经网络 流量控制 异步传输网 反馈 可用位率
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部