Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-d...Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.展开更多
Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model,a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy...Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model,a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy control was put forward,and a self-organizing fuzzy control model was established.The structure of the network can be optimized dynamically.In the course of studying,the network can automatically adjust its structure based on the specific questions and make its structure the optimal.The input and output of the network are fuzzy sets,and the trained network can complete the composite relation,the fuzzy inference.For decreasing the off-line training time of BP network,the fuzzy sets are encoded.The simulation results indicate that the self-organizing fuzzy control based on dynamic neural network is better than traditional decoupling PID control.展开更多
In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model...In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model, the fuzzy control method was used to control the shape on four-high cold mill. The simulation results showed that the system can be applied to real time on line control of the shape.展开更多
To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so th...To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.展开更多
This paper presents the principle of the fuzzy associate memory controlled leaky bucket (FAMLB) and several concepts for Usage Parameter Control (UPC) in ATM networks. The multiplex weight and random fuzzy rules adjus...This paper presents the principle of the fuzzy associate memory controlled leaky bucket (FAMLB) and several concepts for Usage Parameter Control (UPC) in ATM networks. The multiplex weight and random fuzzy rules adjustment method in the system architecture are introduced. The conclusions show that the FAMLB is a better dynamic method of UPC than the traditional ones.展开更多
Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model, a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzz...Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model, a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy control was put forward, and a self-organizing fuzzy control model was established. The structure of the network can be optimized dynamically. In the course of studying, the network can automatically adjust its structure based on the specific questions and make its structure the optimal. The input and output of the network are fuzzy sets, and the trained network can complete the composite relation, the fuzzy inference. For decreasing the off-line training time of BP network, the fuzzy sets are encoded. The simulation results indicate that the self-organizing fuzzy control based on dynamic neural network is better than traditional decoupling PID control.展开更多
文摘Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.
文摘Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model,a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy control was put forward,and a self-organizing fuzzy control model was established.The structure of the network can be optimized dynamically.In the course of studying,the network can automatically adjust its structure based on the specific questions and make its structure the optimal.The input and output of the network are fuzzy sets,and the trained network can complete the composite relation,the fuzzy inference.For decreasing the off-line training time of BP network,the fuzzy sets are encoded.The simulation results indicate that the self-organizing fuzzy control based on dynamic neural network is better than traditional decoupling PID control.
基金ItemSponsored by Provincial Natural Science Foundation of Hebei Province of China (E2004000206)
文摘In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model, the fuzzy control method was used to control the shape on four-high cold mill. The simulation results showed that the system can be applied to real time on line control of the shape.
文摘To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.
文摘This paper presents the principle of the fuzzy associate memory controlled leaky bucket (FAMLB) and several concepts for Usage Parameter Control (UPC) in ATM networks. The multiplex weight and random fuzzy rules adjustment method in the system architecture are introduced. The conclusions show that the FAMLB is a better dynamic method of UPC than the traditional ones.
基金Sponsored by Scientific and Technological Brainstorm Project for Ninth Five-Year Plan of China(95-528-03-01-03c)Provincial Youth Foundation of Shanxi of China(20011023)
文摘Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model, a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy control was put forward, and a self-organizing fuzzy control model was established. The structure of the network can be optimized dynamically. In the course of studying, the network can automatically adjust its structure based on the specific questions and make its structure the optimal. The input and output of the network are fuzzy sets, and the trained network can complete the composite relation, the fuzzy inference. For decreasing the off-line training time of BP network, the fuzzy sets are encoded. The simulation results indicate that the self-organizing fuzzy control based on dynamic neural network is better than traditional decoupling PID control.