For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
A new scheme of direct adaptive fuzzy controller for a class of nonlinear systems with unknown triangular control gain structure is proposed. The design is based on the principle of sliding mode control and the approx...A new scheme of direct adaptive fuzzy controller for a class of nonlinear systems with unknown triangular control gain structure is proposed. The design is based on the principle of sliding mode control and the approximation capability of the first type fuzzy systems. By introducing integral-type Lyapunov function and adopting the adaptive compensation term of optimal approximation error, the closed-loop control system is proved to be globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
Fuzzy control problems for systems with bounded uncertain delays were studied. Based on Lyapunov stability theory and matrix theory, a nonlinear state feedback fuzzy controller was designed by linear matrix inequaliti...Fuzzy control problems for systems with bounded uncertain delays were studied. Based on Lyapunov stability theory and matrix theory, a nonlinear state feedback fuzzy controller was designed by linear matrix inequalities (LMI) approach, and the global exponential stability of the closed-loop system was strictly proved. For a fuzzy control system with bounded uncertain delays, under the global exponential stability condition which is reduced to p linear matrix inequalities, the controller guarantees stability performances of state variables. Finally, the simulation shows the validity of the method in tiffs paper.展开更多
This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzz...This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear singular system. The purpose of the robust stochastic stabilization problem is to design a state feedback fuzzy controller such that the closed-loop fuzzy system is robustly stochastically stable for all admissible uncertainties. In the robust H-infinity control problem, in addition to the stochastic stability requirement, a prescribed performance is required to be achieved. Linear matrix inequality (LMI) sufficient conditions are developed to solve these problems, respectively. The expressions of desired state feedback fuzzy controllers are given. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.展开更多
According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To sati...According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To satisfy with system performance, an indirect accelerated adaptive fuzzy (IAAF) controller is proposed, and its general form is presented. The general form IAAF controller ensures necessary control criteria and system's global stability using Lyapunov Theorem. It has been proved that the close-loop system error converges to a small neighborhood of equilibrium point. The optimal IAAF controller is derived to guarantee the process's shortest settling time. Simulation results indicate the IAAF controller make the system more stable, accurate, and fast.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
In this paper, an adaptive fuzzy control algorithm is proposed for trajectory tracking of an n-DOF robot manipulator subjected to parametric uncertainty and it is advantageous compared to the conventional nonlinear sa...In this paper, an adaptive fuzzy control algorithm is proposed for trajectory tracking of an n-DOF robot manipulator subjected to parametric uncertainty and it is advantageous compared to the conventional nonlinear saturation controller. The asymptotic stability of the proposed controller has been derived based on Lyapunaov energy function. The design procedure is straightforward due to its simple fuzzy rules and control strategies. The simulation results show that the present control strategy effectively reduces the control effort with negligible chattering in control torque signals in comparison to the existing nonlinear saturation controller.展开更多
Adaptive control for a class of nonlinear systems is discussed in this paper.We use fuzzy systems to approximate the ideal optimal controller by adjusting the parameters of fuzzy systems.In order to tune these paramet...Adaptive control for a class of nonlinear systems is discussed in this paper.We use fuzzy systems to approximate the ideal optimal controller by adjusting the parameters of fuzzy systems.In order to tune these parameters,linear relationship between approximation error and parameters is established first.Then we design the adaptive laws of these parameters based on Lyapunov synthesis approach.The advantage of our method is that we can tune not only the parameters of the consequences of fuzzy rules,but also the parameters of the membership functions.As a result,a stable and more flexible controller is achieved.The performance of the adaptive scheme is demonstrated through the longitudinal vehicle control.展开更多
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear funct...In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.展开更多
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu...In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.展开更多
Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov f...Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. To illustrate the validity of the proposed method, a design example is provided.展开更多
An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control...An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states. Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness of the proposed approach.展开更多
Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation...Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation of the unknown systems. In order to reducethe approximation errors between the true nonlinearmodel and FLS, an adaptive law is presented. The sta-bility of the controlled system is proved by using Lya-punov stability theory. The proposed control scheme isapplied to an inverted pendulum system to show its effec-tiveness.展开更多
A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, th...A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
A sufficient condition for the existence of nonfragile state-feedback controllers and a switching law for a class of uncertain switching fuzzy time-delay systems are proposed based on the multiple Lyapunov functions t...A sufficient condition for the existence of nonfragile state-feedback controllers and a switching law for a class of uncertain switching fuzzy time-delay systems are proposed based on the multiple Lyapunov functions technique, under the assumption that the controller gain to be designed has variations. The corresponding results are all formulated in terms of linear matrix inequalities (LMIs). Simulation results show the effectiveness of the design method.展开更多
An adaptive fuzzy tracking control scheme is presented for a class of switched multi-input-multi-output (MIMO) nonlinear systems with disturbances under arbitrary switching. Adaptive fuzzy systems are employed to appr...An adaptive fuzzy tracking control scheme is presented for a class of switched multi-input-multi-output (MIMO) nonlinear systems with disturbances under arbitrary switching. Adaptive fuzzy systems are employed to approximate the unknown functions on line,and a systematic framework for adaptive fuzzy tracking controller design is given,where the dynamic surface control (DSC) approach is used to solve the problem of "explosion of complexity"in the backstepping design procedure. According to the common Lyapunov function theory,it is proved that the proposed controller can guarantee the boundedness of all signals in the closed loop system. Finally,the simulation results demonstrate the validity of the control approach.展开更多
Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membe...Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membership functions is incorporated in the stability analysis by approximating the original continuous membership functions with staircase membership functions. The stability of the T-S fuzzy systems was investigated based on a quadratic Lyapunov function. The asymptotically necessary and sufficient stability conditions in terms of linear matrix inequalities were derived using a basic inequality. A fuzzy controller was also designed based on the stability results. The derivation process of the stability results is straightforward and easy to understand. Case studies confirmed the validity of the obtained stability results.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
基金The National Natural Science Foundation of PRC (60074013) the Natural Science Foundation of Education Bureau of Jiangsu Province (00KJB510006 & 00KJB470006).
文摘A new scheme of direct adaptive fuzzy controller for a class of nonlinear systems with unknown triangular control gain structure is proposed. The design is based on the principle of sliding mode control and the approximation capability of the first type fuzzy systems. By introducing integral-type Lyapunov function and adopting the adaptive compensation term of optimal approximation error, the closed-loop control system is proved to be globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
文摘Fuzzy control problems for systems with bounded uncertain delays were studied. Based on Lyapunov stability theory and matrix theory, a nonlinear state feedback fuzzy controller was designed by linear matrix inequalities (LMI) approach, and the global exponential stability of the closed-loop system was strictly proved. For a fuzzy control system with bounded uncertain delays, under the global exponential stability condition which is reduced to p linear matrix inequalities, the controller guarantees stability performances of state variables. Finally, the simulation shows the validity of the method in tiffs paper.
基金supported by the National Natural Science Foundation of China (No.60574088, 60274014)the Research Plan Program of Scienceand Technology Ministry of Wuhan (No. 200950199019-07)
文摘This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear singular system. The purpose of the robust stochastic stabilization problem is to design a state feedback fuzzy controller such that the closed-loop fuzzy system is robustly stochastically stable for all admissible uncertainties. In the robust H-infinity control problem, in addition to the stochastic stability requirement, a prescribed performance is required to be achieved. Linear matrix inequality (LMI) sufficient conditions are developed to solve these problems, respectively. The expressions of desired state feedback fuzzy controllers are given. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.
基金supported by Plan of Excellent Leaders in Their Science in Shanghai, China (No.06XD14201).
文摘According to a type of normal nonlinear system, an indirect adaptive fuzzy (IAF) controller has been applied to those systems where no accurate mathematical models of the systems under control are available. To satisfy with system performance, an indirect accelerated adaptive fuzzy (IAAF) controller is proposed, and its general form is presented. The general form IAAF controller ensures necessary control criteria and system's global stability using Lyapunov Theorem. It has been proved that the close-loop system error converges to a small neighborhood of equilibrium point. The optimal IAAF controller is derived to guarantee the process's shortest settling time. Simulation results indicate the IAAF controller make the system more stable, accurate, and fast.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
文摘In this paper, an adaptive fuzzy control algorithm is proposed for trajectory tracking of an n-DOF robot manipulator subjected to parametric uncertainty and it is advantageous compared to the conventional nonlinear saturation controller. The asymptotic stability of the proposed controller has been derived based on Lyapunaov energy function. The design procedure is straightforward due to its simple fuzzy rules and control strategies. The simulation results show that the present control strategy effectively reduces the control effort with negligible chattering in control torque signals in comparison to the existing nonlinear saturation controller.
文摘Adaptive control for a class of nonlinear systems is discussed in this paper.We use fuzzy systems to approximate the ideal optimal controller by adjusting the parameters of fuzzy systems.In order to tune these parameters,linear relationship between approximation error and parameters is established first.Then we design the adaptive laws of these parameters based on Lyapunov synthesis approach.The advantage of our method is that we can tune not only the parameters of the consequences of fuzzy rules,but also the parameters of the membership functions.As a result,a stable and more flexible controller is achieved.The performance of the adaptive scheme is demonstrated through the longitudinal vehicle control.
基金supported by National Natural Science Foundation of China (No. 60525303 and 60704009)Key Research Program of Hebei Education Department (No. ZD200908)
文摘In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.
基金China Postdoctoral Science Foundation and Natural Science of Heibei Province!698004
文摘In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.
文摘Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. To illustrate the validity of the proposed method, a design example is provided.
文摘An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states. Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness of the proposed approach.
基金This work was supported by China Postdoctoral Science Foundation and Hebei Provincial Natural Science Foundation(698004).
文摘Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation of the unknown systems. In order to reducethe approximation errors between the true nonlinearmodel and FLS, an adaptive law is presented. The sta-bility of the controlled system is proved by using Lya-punov stability theory. The proposed control scheme isapplied to an inverted pendulum system to show its effec-tiveness.
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2007AA04Z344) supported by the National High Technology Research and Development Program of China
文摘A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No.60874024, 60574013, 90816028)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.200801450019)
文摘A sufficient condition for the existence of nonfragile state-feedback controllers and a switching law for a class of uncertain switching fuzzy time-delay systems are proposed based on the multiple Lyapunov functions technique, under the assumption that the controller gain to be designed has variations. The corresponding results are all formulated in terms of linear matrix inequalities (LMIs). Simulation results show the effectiveness of the design method.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60974106,91116017 )the Aeronautical Science Fund (Grant No.20095152028)the Funding for Outstanding Doctoral Dissertation in NUAA (Grant No.BCXJ10-04)
文摘An adaptive fuzzy tracking control scheme is presented for a class of switched multi-input-multi-output (MIMO) nonlinear systems with disturbances under arbitrary switching. Adaptive fuzzy systems are employed to approximate the unknown functions on line,and a systematic framework for adaptive fuzzy tracking controller design is given,where the dynamic surface control (DSC) approach is used to solve the problem of "explosion of complexity"in the backstepping design procedure. According to the common Lyapunov function theory,it is proved that the proposed controller can guarantee the boundedness of all signals in the closed loop system. Finally,the simulation results demonstrate the validity of the control approach.
文摘Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membership functions is incorporated in the stability analysis by approximating the original continuous membership functions with staircase membership functions. The stability of the T-S fuzzy systems was investigated based on a quadratic Lyapunov function. The asymptotically necessary and sufficient stability conditions in terms of linear matrix inequalities were derived using a basic inequality. A fuzzy controller was also designed based on the stability results. The derivation process of the stability results is straightforward and easy to understand. Case studies confirmed the validity of the obtained stability results.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.