Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathema...Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries...Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries has shown its potential to solve challenging business problems,as well as the possibility to create new business models which can increase a firm’s competitiveness.Due to the novelty of the technology,whereby many companies are still exploring potential use cases,and considering the complexity of blockchain technology,which may require huge changes to a company’s existing systems and processes,it is important for companies to carefully evaluate suitable use cases and determine if blockchain technology is the best solution for their specific needs.This research aims to provide an evaluation framework that determines the important dimensions of blockchain suitability assessment by identifying the key determinants of suitable use cases in a business context.In this paper,a novel approach that utilizes both qualitative(Delphi method)and quantitative(fuzzy set theory)methods has been proposed to objectively account for the uncertainty associated with data collection and the vagueness of subjective judgments.This work started by scanning available literature to identify major suitability dimensions and collected a range of criteria,indicators,and factors that had been previously identified for related purposes.Expert opinions were then gathered using a questionnaire to rank the importance and relevance of these elements to suitability decisions.Subsequently,the data were analyzed and we proceeded to integrate multi-criteria group decision-making(MCGDM)and intuitionistic fuzzy set(IFS)theory.The findings demonstrated a high level of agreement among experts,with the model being extremely sensitive to variances in expert assessments.Furthermore,the results helped to refine and select the most relevant suitability determinants under three important dimensions:functional suitability of the use case,organizational applicability,and ecosystem readiness.展开更多
Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the...Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.展开更多
A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theor...A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.展开更多
Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy mult...Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.展开更多
Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order prefer...Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order preference by similarity to the ideal solution(TOPSIS)is an established DM process.The objective of this report happens to broaden the approach of TOPSIS to solve the DM issues designed with Hesitancy fuzzy data,in which evaluation evidence given by the experts on possible solutions is presents as Hesitancy fuzzy decision matrices,each of which is defined by Hesitancy fuzzy numbers.Findings:we represent analytical results,such as designing a satellite communication network and assessing reservoir operation methods,to demonstrate that our suggested thoughts may be used in DM.Aim:We studied a new testing method for the arti-ficial communication system to give proof of the future construction of satellite earth stations.We aim to identify the best one from the different testing places.We are alsofinding the best operation schemes in the reservoir.In this article,we present the concepts of Laplacian energy(LE)in Hesitancy fuzzy graphs(HFGs),the weight function of LE of HFGs,and the TOPSIS method technique is used to produce the hesitancy fuzzy weighted-average(HFWA).Also,consider practical examples to illustrate the applicability of thefinest design of satellite communication systems and also evaluation of reservoir schemes.展开更多
In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then t...The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.展开更多
This paper presents an operational framework of unstructured decision-making approach involving quality function deployment(QFD)in an uncertain linguistic context.Firstly,QFD is extended to the multi-enterprise paradi...This paper presents an operational framework of unstructured decision-making approach involving quality function deployment(QFD)in an uncertain linguistic context.Firstly,QFD is extended to the multi-enterprise paradigm in a real-world manufacturing environment.Secondly,hesitant fuzzy linguistic term sets(HFLTSs),which facilitate the management and handling of information equivocality,are designed to construct a house of quality(HoQ)in the product planning process.The technique of computing with words is applied to bridge the gap between mechanisms of the human brain and machine processes with fuzzy linguistic term sets.Thirdly,a multi-enterprise QFD pattern is formulated as an unstructured decision-making problem for alternative infrastructure project selection in a manufacturing organization.The inter-relationships of cooperative partners are directly matched with a back propagation neural network(BPNN)to construct the multi-enterprise manufacturing network.The resilience of the manufacturing organization is considered by formulating an outranking method on the basis of HFLTSs to decide on infrastructure project alternatives.Finally,a real-world example,namely,the prototype manufacturing of an automatic transmission for a vehicle,is provided to illustrate the effectiveness of the proposed decision-making approach.展开更多
Public-private partnerships(PPPs)have been used by governments around the world to procure and construct infrastructural amenities.It relies on private sector expertise and funding to achieve this lofty objective.Howe...Public-private partnerships(PPPs)have been used by governments around the world to procure and construct infrastructural amenities.It relies on private sector expertise and funding to achieve this lofty objective.However,given the uncertainties of project management,transparency,accountability,and expropriation,this phenomenon has gained tremendous attention in recent years due to the important role it plays in curbing infrastructural deficits globally.Interestingly,the reasonable benefit distribution scheme in a PPP project is related to the behavior decisionmaking of the government and social capital,aswell as the performance of the project.In this paper,the government and social capital which are the key stakeholders of PPP projects were selected as the research objects.Based on the fuzzy expected value model and game theory,a hybrid method was adopted in this research taking into account the different risk preferences of both public entities and private parties under the fuzzy demand environment.To alleviate the problem of insufficient utilization of social capital in a PPP project,this paper seeks to grasp the relationship that exists between the benefit distribution of stakeholders,their behavioral decision-making,and project performance,given that they impact the performance of both public entities and private parties,as well as assist in maximizing the overall utility of the project.Furthermore,four game models were constructed in this study,while the expected value and opportunity-constrained programming model for optimal decision-making were derived using alternate perspectives of both centralized decision-making and decentralized decision-making.Afterward,the optimal behavioral decision-making of public entities and private parties in four scenarios was discussed and thereafter compared,which led to an ensuing discussion on the benefit distribution system under centralized decision-making.Lastly,based on an example case,the influence of different confidence levels,price,and fuzzy uncertainties of PPP projects on the equilibrium strategy results of both parties were discussed,giving credence to the effectiveness of the hybrid method.The results indicate that adjusting different confidence levels yields different equilibriumpoints,and therefore signposts that social capital has a fair perception of opportunities,as well as identifies reciprocal preferences.Nevertheless,we find that an increase in the cost coefficient of the government and social capital does not inhibit the effort of both parties.Our results also indicate that a reasonable benefit distribution of PPP projects can assist them in realizing optimum Pareto improvements over time.The results provide us with very useful strategies and recommendations to improve the overall performance of PPP projects in China.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper inves...The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.展开更多
Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly tr...Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.展开更多
There is a lot of information in healthcare and medical records.However,it is challenging for humans to turn data into information and spot hidden patterns in today’s digitally based culture.Effective decision suppor...There is a lot of information in healthcare and medical records.However,it is challenging for humans to turn data into information and spot hidden patterns in today’s digitally based culture.Effective decision support technologies can help medical professionals find critical information concealed in voluminous data and support their clinical judgments and in different healthcare management activities.This paper presented an extensive literature survey for healthcare systems using machine learning based on multi-criteria decision-making.Various existing studies are considered for review,and a critical analysis is being done through the reviews study,which can help the researchers to explore other research areas to cater for the need of the field.展开更多
Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and...Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and defuzzification processes can be very useful.Defuzzification is an effective process to get a single number from the output of a fuzzy set.Considering defuzzification as a center point of this research paper,to analyze and understand the effect of different types of vehicles according to their performance.In this paper,the multi-criteria decision-making(MCDM)process under uncertainty and defuzzification is discussed by using the center of the area(COA)or centroidmethod.Further,to find the best solution,Hurwicz criteria are used on the defuzzified data.Anewdecision-making technique is proposed using Hurwicz criteria for triangular and trapezoidal fuzzy numbers.The proposed technique considers all types of decision makers’perspectives such as optimistic,neutral,and pessimistic which is crucial in solving decisionmaking problems.A simple case study is used to demonstrate and discuss the Centroid Method and Hurwicz Criteria for measuring risk attitudes among decision-makers.The significance of the proposed defuzzification method is demonstrated by comparing it to previous defuzzification procedures with its application.展开更多
The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q...The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.展开更多
Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative ...Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.展开更多
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
文摘Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries has shown its potential to solve challenging business problems,as well as the possibility to create new business models which can increase a firm’s competitiveness.Due to the novelty of the technology,whereby many companies are still exploring potential use cases,and considering the complexity of blockchain technology,which may require huge changes to a company’s existing systems and processes,it is important for companies to carefully evaluate suitable use cases and determine if blockchain technology is the best solution for their specific needs.This research aims to provide an evaluation framework that determines the important dimensions of blockchain suitability assessment by identifying the key determinants of suitable use cases in a business context.In this paper,a novel approach that utilizes both qualitative(Delphi method)and quantitative(fuzzy set theory)methods has been proposed to objectively account for the uncertainty associated with data collection and the vagueness of subjective judgments.This work started by scanning available literature to identify major suitability dimensions and collected a range of criteria,indicators,and factors that had been previously identified for related purposes.Expert opinions were then gathered using a questionnaire to rank the importance and relevance of these elements to suitability decisions.Subsequently,the data were analyzed and we proceeded to integrate multi-criteria group decision-making(MCGDM)and intuitionistic fuzzy set(IFS)theory.The findings demonstrated a high level of agreement among experts,with the model being extremely sensitive to variances in expert assessments.Furthermore,the results helped to refine and select the most relevant suitability determinants under three important dimensions:functional suitability of the use case,organizational applicability,and ecosystem readiness.
基金Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the LargeGroup Research Project underGrant Number(R.G.P.2/181/44).
文摘Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.
文摘A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.
基金This paper was supported by Wonkwang University in 2022.
文摘Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.
文摘Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order preference by similarity to the ideal solution(TOPSIS)is an established DM process.The objective of this report happens to broaden the approach of TOPSIS to solve the DM issues designed with Hesitancy fuzzy data,in which evaluation evidence given by the experts on possible solutions is presents as Hesitancy fuzzy decision matrices,each of which is defined by Hesitancy fuzzy numbers.Findings:we represent analytical results,such as designing a satellite communication network and assessing reservoir operation methods,to demonstrate that our suggested thoughts may be used in DM.Aim:We studied a new testing method for the arti-ficial communication system to give proof of the future construction of satellite earth stations.We aim to identify the best one from the different testing places.We are alsofinding the best operation schemes in the reservoir.In this article,we present the concepts of Laplacian energy(LE)in Hesitancy fuzzy graphs(HFGs),the weight function of LE of HFGs,and the TOPSIS method technique is used to produce the hesitancy fuzzy weighted-average(HFWA).Also,consider practical examples to illustrate the applicability of thefinest design of satellite communication systems and also evaluation of reservoir schemes.
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.
基金supported by the National Key Research and Development Program of China(2016YFD0700605)the National Natural Science Foundation of China(51875151)Hefei Municipal Natural Science Foundation(2021029)。
文摘This paper presents an operational framework of unstructured decision-making approach involving quality function deployment(QFD)in an uncertain linguistic context.Firstly,QFD is extended to the multi-enterprise paradigm in a real-world manufacturing environment.Secondly,hesitant fuzzy linguistic term sets(HFLTSs),which facilitate the management and handling of information equivocality,are designed to construct a house of quality(HoQ)in the product planning process.The technique of computing with words is applied to bridge the gap between mechanisms of the human brain and machine processes with fuzzy linguistic term sets.Thirdly,a multi-enterprise QFD pattern is formulated as an unstructured decision-making problem for alternative infrastructure project selection in a manufacturing organization.The inter-relationships of cooperative partners are directly matched with a back propagation neural network(BPNN)to construct the multi-enterprise manufacturing network.The resilience of the manufacturing organization is considered by formulating an outranking method on the basis of HFLTSs to decide on infrastructure project alternatives.Finally,a real-world example,namely,the prototype manufacturing of an automatic transmission for a vehicle,is provided to illustrate the effectiveness of the proposed decision-making approach.
基金supported by the National Natural Science Foundation of China(No.62141302)the Humanities Social Science Programming Project of the Ministry of Education of China(No.20YJA630059)+2 种基金the Natural Science Foundation of Jiangxi Province of China(No.20212BAB201011)the China Postdoctoral Science Foundation(No.2019M662265)the Research Project of Economic and Social Development in Liaoning Province of China(No.2022lslybkt-053).
文摘Public-private partnerships(PPPs)have been used by governments around the world to procure and construct infrastructural amenities.It relies on private sector expertise and funding to achieve this lofty objective.However,given the uncertainties of project management,transparency,accountability,and expropriation,this phenomenon has gained tremendous attention in recent years due to the important role it plays in curbing infrastructural deficits globally.Interestingly,the reasonable benefit distribution scheme in a PPP project is related to the behavior decisionmaking of the government and social capital,aswell as the performance of the project.In this paper,the government and social capital which are the key stakeholders of PPP projects were selected as the research objects.Based on the fuzzy expected value model and game theory,a hybrid method was adopted in this research taking into account the different risk preferences of both public entities and private parties under the fuzzy demand environment.To alleviate the problem of insufficient utilization of social capital in a PPP project,this paper seeks to grasp the relationship that exists between the benefit distribution of stakeholders,their behavioral decision-making,and project performance,given that they impact the performance of both public entities and private parties,as well as assist in maximizing the overall utility of the project.Furthermore,four game models were constructed in this study,while the expected value and opportunity-constrained programming model for optimal decision-making were derived using alternate perspectives of both centralized decision-making and decentralized decision-making.Afterward,the optimal behavioral decision-making of public entities and private parties in four scenarios was discussed and thereafter compared,which led to an ensuing discussion on the benefit distribution system under centralized decision-making.Lastly,based on an example case,the influence of different confidence levels,price,and fuzzy uncertainties of PPP projects on the equilibrium strategy results of both parties were discussed,giving credence to the effectiveness of the hybrid method.The results indicate that adjusting different confidence levels yields different equilibriumpoints,and therefore signposts that social capital has a fair perception of opportunities,as well as identifies reciprocal preferences.Nevertheless,we find that an increase in the cost coefficient of the government and social capital does not inhibit the effort of both parties.Our results also indicate that a reasonable benefit distribution of PPP projects can assist them in realizing optimum Pareto improvements over time.The results provide us with very useful strategies and recommendations to improve the overall performance of PPP projects in China.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金funded by King Khalid University through a large group research project under Grant Number R.G.P.2/449/44.
文摘The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.
文摘Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.
文摘There is a lot of information in healthcare and medical records.However,it is challenging for humans to turn data into information and spot hidden patterns in today’s digitally based culture.Effective decision support technologies can help medical professionals find critical information concealed in voluminous data and support their clinical judgments and in different healthcare management activities.This paper presented an extensive literature survey for healthcare systems using machine learning based on multi-criteria decision-making.Various existing studies are considered for review,and a critical analysis is being done through the reviews study,which can help the researchers to explore other research areas to cater for the need of the field.
基金The Research Center for Advanced Materials Science(RCAMS)at King Khalid University,Saudi Arabia,for funding this work under the Grant Number RCAMS/KKU/019-20.
文摘Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and defuzzification processes can be very useful.Defuzzification is an effective process to get a single number from the output of a fuzzy set.Considering defuzzification as a center point of this research paper,to analyze and understand the effect of different types of vehicles according to their performance.In this paper,the multi-criteria decision-making(MCDM)process under uncertainty and defuzzification is discussed by using the center of the area(COA)or centroidmethod.Further,to find the best solution,Hurwicz criteria are used on the defuzzified data.Anewdecision-making technique is proposed using Hurwicz criteria for triangular and trapezoidal fuzzy numbers.The proposed technique considers all types of decision makers’perspectives such as optimistic,neutral,and pessimistic which is crucial in solving decisionmaking problems.A simple case study is used to demonstrate and discuss the Centroid Method and Hurwicz Criteria for measuring risk attitudes among decision-makers.The significance of the proposed defuzzification method is demonstrated by comparing it to previous defuzzification procedures with its application.
文摘The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.
基金supported by the National Natural Science Foundation of China(Nos.71740021,11861034,and 61966030)the Humanities Social Science Programming Project of Ministry of Education of China(No.20YJA630059)+1 种基金the Natural Science Foundation of Jiangxi Province of China(No.20192BAB207012)the Natural Science Foundation of Qinghai Province of China(No.2019-ZJ-7086).
文摘Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.