Intuitionistic trapezoidal fuzzy numbers and their operational laws are defined. Based on these operational laws, some aggregation operators, including intuitionistic trapezoidal fuzzy weighted arithmetic averaging op...Intuitionistic trapezoidal fuzzy numbers and their operational laws are defined. Based on these operational laws, some aggregation operators, including intuitionistic trapezoidal fuzzy weighted arithmetic averaging operator and weighted geometric averaging operator are proposed. Expected values, score function, and accuracy function of intuitionitsic trapezoidal fuzzy numbers are defined. Based on these, a kind of intuitionistic trapezoidal fuzzy multi-criteria decision making method is proposed. By using these aggregation operators, criteria values are aggregated and integrated intuitionistic trapezoidal fuzzy numbers of alternatives are attained. By comparing score function and accuracy function values of integrated fuzzy numbers, a ranking of the whole alternative set can be attained. An example is given to show the feasibility and availability of the method.展开更多
Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The ...Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.展开更多
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ...Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.展开更多
This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the archite...This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.展开更多
Purpose–The purpose of this paper is to develop a multi-attribute group decision-making(MAGDM)method under the q-rung orthopair trapezoidal fuzzy environment,which calculates the interaction between the criteria depe...Purpose–The purpose of this paper is to develop a multi-attribute group decision-making(MAGDM)method under the q-rung orthopair trapezoidal fuzzy environment,which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral(q-ROTrFACI)and employ TODIM(an acronym in Portuguese of Interactive and Multi-criteria Decision Making)to consider the risk psychology of decision-makers,to determine the optimal ranking of alternatives.Design/methodology/approach–In MAGDM,q-rung orthopair trapezoidal fuzzy numbers(q-ROTrFNs)are efficient to indicate the quantitative vagueness of decision-makers.The q-ROTrFACI operator is defined and some properties are proved.Then,a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function.Based on the above,a Choquet integral-based TODIM(CI-TODIM)method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.Findings–The paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria.Then,an approach is proposed to determine the center point of q–ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed.Furthermore,CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context.The illustration example of business models’solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.Originality/value–Thepaperdevelops a novelCI-TODIMmethodthat effectivelysolves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers,which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.展开更多
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
The upper bound of the optimal number of clusters in clustering algorithm is studied in this paper. A new method is proposed to solve this issue. This method shows that the rule cmax≤N^(1/N), which is popular in curr...The upper bound of the optimal number of clusters in clustering algorithm is studied in this paper. A new method is proposed to solve this issue. This method shows that the rule cmax≤N^(1/N), which is popular in current papers, is reasonable in some sense. The above conclusion is tested and analyzed by some typical examples in the literature, which demonstrates the validity of the new method.展开更多
In this paper, a new decision making approach is proposed for the multi-attribute large group emergency decision-making problem that attribute weights are unknown and expert preference information is expressed by gene...In this paper, a new decision making approach is proposed for the multi-attribute large group emergency decision-making problem that attribute weights are unknown and expert preference information is expressed by generalized interval-valued trapezoidal fuzzy numbers (GITFNs). Firstly, a degree of similarity formula between GITFNs is presented. Secondly, expert preference information on different alternatives is clustered into several aggregations via the fuzzy clustering method. As the clustering proceeds, an index of group preference consistency is introduced to ensure the clustering effect, and then the group preference information on different alternatives is obtained. Thirdly, the TOPSIS method is used to rank the alternatives. Finally, an example is taken to show the feasibility and effectiveness of this approach. These method can ensure the consistency degree of group preference, thus decision efficiency of emergency response activities can be improved.展开更多
The problem of measuring conflict in large-group decision making is examined with every decision preference expressed by multiple interval intuitionistic trapezoidal fuzzy numbers (IITFNs). First, a distance measure...The problem of measuring conflict in large-group decision making is examined with every decision preference expressed by multiple interval intuitionistic trapezoidal fuzzy numbers (IITFNs). First, a distance measurement between two IITFNs is given and a function of conflict between two members of the large group is proposed. Second, members of the large group are clustered. A measurement model of group conflict, which is applied to aggregating large-group preferences, is then proposed by employing the conflict measure of clusters. Finally, a simulation example is presented to validate the models. These models can deal with the preference analysis and coordination of a large-group decision, and are thus applicable to emergency group decision making.展开更多
We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation....We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation. Two methods are also proposed for automatic clustering: The first one is to determine the optimal number of clusters and the second one is the fuzzy competitively clustering method based on competitively learning techniques. Essential foreground images obtained from any of the color clusters are combined into foreground images. Further performance analysis reveals the advantages of the proposed methods.展开更多
In this paper, we introduce a method to obtain the nearest trapezoidal approximation of fuzzy numbers so that preserving conditions expect interval and include the core of a fuzzy number.
A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary jud...A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.展开更多
This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzzines...This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzziness and com-plexity.In these situations,judgments are represented by the set of fuzzy numbers.Most of the fuzzy optimization models derive crisp priorities for judgments repre-sented with Triangular Fuzzy Numbers(TFNs)only.They do not work for other types of Triangular Shaped Fuzzy Numbers(TSFNs)and Trapezoidal Fuzzy Numbers(TrFNs).To overcome this problem,a sum of squared error(SSE)based optimization model is proposed.Unlike some other methods,the proposed model derives crisp weights from all of the above-mentioned fuzzy judgments.A fuzzy number is simulated using the Monte Carlo method.A threshold-based constraint is also applied to minimize the deviation from the initial judgments.Genetic Algorithm(GA)is used to solve the optimization model.We have also conducted casestudiesto show the proposed approach’s advantages over the existingmethods.Results show that the proposed model outperforms other models to minimize SSE and deviation from initial judgments.Thus,the proposed model can be applied in various real time scenarios as it can reduce the SSE value upto 29%compared to the existing studies.展开更多
In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics ...In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.展开更多
The Floyd-Warshall algorithm is frequently used to determine the shortest path between any pair of nodes.It works well for crisp weights,but the problem arises when weights are vague and uncertain.Let us take an examp...The Floyd-Warshall algorithm is frequently used to determine the shortest path between any pair of nodes.It works well for crisp weights,but the problem arises when weights are vague and uncertain.Let us take an example of computer networks,where the chosen path might no longer be appropriate due to rapid changes in network conditions.The optimal path from among all possible courses is chosen in computer networks based on a variety of parameters.In this paper,we design a new variant of the Floyd-Warshall algorithm that identifies an All-Pair Shortest Path(APSP)in an uncertain situation of a network.In the proposed methodology,multiple criteria and theirmutual associationmay involve the selection of any suitable path between any two node points,and the values of these criteria may change due to an uncertain environment.We use trapezoidal picture fuzzy addition,score,and accuracy functions to find APSP.We compute the time complexity of this algorithm and contrast it with the traditional Floyd-Warshall algorithm and fuzzy Floyd-Warshall algorithm.展开更多
The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the wester...The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
基金supported by the National Natural Science Foundation of China (70771115).
文摘Intuitionistic trapezoidal fuzzy numbers and their operational laws are defined. Based on these operational laws, some aggregation operators, including intuitionistic trapezoidal fuzzy weighted arithmetic averaging operator and weighted geometric averaging operator are proposed. Expected values, score function, and accuracy function of intuitionitsic trapezoidal fuzzy numbers are defined. Based on these, a kind of intuitionistic trapezoidal fuzzy multi-criteria decision making method is proposed. By using these aggregation operators, criteria values are aggregated and integrated intuitionistic trapezoidal fuzzy numbers of alternatives are attained. By comparing score function and accuracy function values of integrated fuzzy numbers, a ranking of the whole alternative set can be attained. An example is given to show the feasibility and availability of the method.
文摘Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.
基金supported by the National Key Research and Development Program of China(No.2022YFB3304400)the National Natural Science Foundation of China(Nos.6230311,62303111,62076060,61932007,and 62176083)the Key Research and Development Program of Jiangsu Province of China(No.BE2022157).
文摘Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed.
基金Science and Researching Foundation of Jiamusi University(L2006-12)
文摘This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.
基金This work is funded in part by Department of Shenzhen Local Science and Technology Development(No:2021Szvup052).
文摘Purpose–The purpose of this paper is to develop a multi-attribute group decision-making(MAGDM)method under the q-rung orthopair trapezoidal fuzzy environment,which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral(q-ROTrFACI)and employ TODIM(an acronym in Portuguese of Interactive and Multi-criteria Decision Making)to consider the risk psychology of decision-makers,to determine the optimal ranking of alternatives.Design/methodology/approach–In MAGDM,q-rung orthopair trapezoidal fuzzy numbers(q-ROTrFNs)are efficient to indicate the quantitative vagueness of decision-makers.The q-ROTrFACI operator is defined and some properties are proved.Then,a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function.Based on the above,a Choquet integral-based TODIM(CI-TODIM)method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.Findings–The paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria.Then,an approach is proposed to determine the center point of q–ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed.Furthermore,CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context.The illustration example of business models’solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.Originality/value–Thepaperdevelops a novelCI-TODIMmethodthat effectivelysolves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers,which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 69872003 and 40035010)
文摘The upper bound of the optimal number of clusters in clustering algorithm is studied in this paper. A new method is proposed to solve this issue. This method shows that the rule cmax≤N^(1/N), which is popular in current papers, is reasonable in some sense. The above conclusion is tested and analyzed by some typical examples in the literature, which demonstrates the validity of the new method.
基金supported by a grant from Natural Science Foundation in China(71171202, 71171201,71210003)the Science Foundation for National Innovation Research Group in China(71221061)Key Project for National Natural Science Foundation in China (71431006)
文摘In this paper, a new decision making approach is proposed for the multi-attribute large group emergency decision-making problem that attribute weights are unknown and expert preference information is expressed by generalized interval-valued trapezoidal fuzzy numbers (GITFNs). Firstly, a degree of similarity formula between GITFNs is presented. Secondly, expert preference information on different alternatives is clustered into several aggregations via the fuzzy clustering method. As the clustering proceeds, an index of group preference consistency is introduced to ensure the clustering effect, and then the group preference information on different alternatives is obtained. Thirdly, the TOPSIS method is used to rank the alternatives. Finally, an example is taken to show the feasibility and effectiveness of this approach. These method can ensure the consistency degree of group preference, thus decision efficiency of emergency response activities can be improved.
基金supported by a grant from the International Scholar Exchange Fellowship(2011-2012) of the Korea Foundation for Advanced StudiesNatural Science Foundation of China(71171202,71171201)+1 种基金the Science Foundation for National Innovation Research Group of China(71221061)the International Cooperation Major Project of the National Natural Science Foundation of China(71210003)
文摘The problem of measuring conflict in large-group decision making is examined with every decision preference expressed by multiple interval intuitionistic trapezoidal fuzzy numbers (IITFNs). First, a distance measurement between two IITFNs is given and a function of conflict between two members of the large group is proposed. Second, members of the large group are clustered. A measurement model of group conflict, which is applied to aggregating large-group preferences, is then proposed by employing the conflict measure of clusters. Finally, a simulation example is presented to validate the models. These models can deal with the preference analysis and coordination of a large-group decision, and are thus applicable to emergency group decision making.
文摘We propose a novel scheme based on clustering analysis in color space to solve text segmentation in complex color images. Text segmentation includes automatic clustering of color space and foreground image generation. Two methods are also proposed for automatic clustering: The first one is to determine the optimal number of clusters and the second one is the fuzzy competitively clustering method based on competitively learning techniques. Essential foreground images obtained from any of the color clusters are combined into foreground images. Further performance analysis reveals the advantages of the proposed methods.
文摘In this paper, we introduce a method to obtain the nearest trapezoidal approximation of fuzzy numbers so that preserving conditions expect interval and include the core of a fuzzy number.
文摘A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.
文摘This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzziness and com-plexity.In these situations,judgments are represented by the set of fuzzy numbers.Most of the fuzzy optimization models derive crisp priorities for judgments repre-sented with Triangular Fuzzy Numbers(TFNs)only.They do not work for other types of Triangular Shaped Fuzzy Numbers(TSFNs)and Trapezoidal Fuzzy Numbers(TrFNs).To overcome this problem,a sum of squared error(SSE)based optimization model is proposed.Unlike some other methods,the proposed model derives crisp weights from all of the above-mentioned fuzzy judgments.A fuzzy number is simulated using the Monte Carlo method.A threshold-based constraint is also applied to minimize the deviation from the initial judgments.Genetic Algorithm(GA)is used to solve the optimization model.We have also conducted casestudiesto show the proposed approach’s advantages over the existingmethods.Results show that the proposed model outperforms other models to minimize SSE and deviation from initial judgments.Thus,the proposed model can be applied in various real time scenarios as it can reduce the SSE value upto 29%compared to the existing studies.
文摘In this paper a fuzzy transportation problem under a fuzzy environment is solved using octagonal fuzzy numbers.The transportation problem is significant and has been widely studied in the field of applied mathematics to solve a system of linear equations in many applications in science.Systems of concurrent linear equations play a vital major role in operational research.The main perspective of this research paper is to find out the minimum amount of transportation cost of some supplies through a capacitated network formerly the availability and the demand notes are octagonal fuzzy numbers.Octagonal fuzzy numbers are used and showed a membership function.To illustrate this method,a fuzzy transportation problem is solved by using octagonal fuzzy numbers using the ranking technique.It is shown that it is the best optimal solution and it is demonstrated with a numerical example.
基金extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No.(R.G.P.2/48/43).
文摘The Floyd-Warshall algorithm is frequently used to determine the shortest path between any pair of nodes.It works well for crisp weights,but the problem arises when weights are vague and uncertain.Let us take an example of computer networks,where the chosen path might no longer be appropriate due to rapid changes in network conditions.The optimal path from among all possible courses is chosen in computer networks based on a variety of parameters.In this paper,we design a new variant of the Floyd-Warshall algorithm that identifies an All-Pair Shortest Path(APSP)in an uncertain situation of a network.In the proposed methodology,multiple criteria and theirmutual associationmay involve the selection of any suitable path between any two node points,and the values of these criteria may change due to an uncertain environment.We use trapezoidal picture fuzzy addition,score,and accuracy functions to find APSP.We compute the time complexity of this algorithm and contrast it with the traditional Floyd-Warshall algorithm and fuzzy Floyd-Warshall algorithm.
基金The National Natural Science Foundation of China under contract Nos 42106005,91958203,41676131,41876155.
文摘The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.