期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering
1
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
下载PDF
Hyperspectral Image Based Interpretable Feature Clustering Algorithm
2
作者 Yaming Kang PeishunYe +1 位作者 Yuxiu Bai Shi Qiu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2151-2168,共18页
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy... Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81. 展开更多
关键词 HYPERSPECTRAL fuzzy clustering tissue P system band selection interpretable
下载PDF
Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering for Noisy Data
3
作者 Pham Huy Thong Florentin Smarandache +5 位作者 Phung The Huan Tran Manh Tuan Tran Thi Ngan Vu Duc Thai Nguyen Long Giang Le Hoang Son 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1981-1997,共17页
Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize cl... Clustering is a crucial method for deciphering data structure and producing new information.Due to its significance in revealing fundamental connections between the human brain and events,it is essential to utilize clustering for cognitive research.Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties.Noisy data can lead to incorrect object recognition and inference.This research aims to innovate a novel clustering approach,named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering(PNTS3FCM),to solve the clustering problem with noisy data using neutral and refusal degrees in the definition of Picture Fuzzy Set(PFS)and Neutrosophic Set(NS).Our contribution is to propose a new optimization model with four essential components:clustering,outlier removal,safe semi-supervised fuzzy clustering and partitioning with labeled and unlabeled data.The effectiveness and flexibility of the proposed technique are estimated and compared with the state-of-art methods,standard Picture fuzzy clustering(FC-PFS)and Confidence-weighted safe semi-supervised clustering(CS3FCM)on benchmark UCI datasets.The experimental results show that our method is better at least 10/15 datasets than the compared methods in terms of clustering quality and computational time. 展开更多
关键词 Safe semi-supervised fuzzy clustering picture fuzzy set neutrosophic set data partition with noises fuzzy clustering
下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
4
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2FCM topic concept space fuzzy c-means clustering text clustering
下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
5
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
下载PDF
Study on Pests Forecasting Using the Method of Neural Network Based on Fuzzy Clustering 被引量:1
6
作者 韦艳玲 《Agricultural Science & Technology》 CAS 2009年第4期159-163,共5页
Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests ... Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests forecasting using the method of neural network based on fuzzy clustering was proposed in this experiment. The simulation results demonstrated that the method was simple and practical and could forecast pests fast and accurately, particularly, the method could obtain good results with few samples and samples correlation. 展开更多
关键词 Neural network fuzzy clustering PEST Forecasting
下载PDF
Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction 被引量:13
7
作者 LI Yulin LIU Li +1 位作者 LONG Teng DONG Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期928-939,共12页
High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization metho... High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models. 展开更多
关键词 global optimization metamodel-based optimization reduction of design space fuzzy clustering
下载PDF
Radio-map Establishment based on Fuzzy Clustering for WLAN Hybrid KNN/ANN Indoor Positioning 被引量:9
8
作者 Zhou Mu Xu Yubin Ma Lin 《China Communications》 SCIE CSCD 2010年第3期64-80,共17页
A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal... A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal Component Analysis (PCA) is utilized for the purpose of simplifying input dimensions of position estimation algorithm and saving storage cost for the establishment of radio-map. Then, reference points (RPs) calibrated in the off-line phase are divided into separate clusters by Fuzzy C-means clustering (FCM), and membership degrees (MDs) for different clusters are also allocated to each RPs. However, the singular RPs cased by the multi-path effect signifi cantly decreases the clustering performance. Therefore, a novel radio-map establishment method is presented based on the modifi cation of signal samples recorded at singular RPs by surface fitting. In the on-line phase, the region which the mobile terminal (MT) belongs to is estimated according to the MDs firstly. Then, in estimated small dimensional regions, MT's coordinates are calculated byKNN positioning method for efficiency purpose. However, for the regions including singular RPs, ANN method is utilized because ofits great pattern matching ability. Furthermore, compared with other typical indoor positioning methods, feasibility and effectiveness of this hybrid KNN/ANN method are also verified by the experimental results in static and tracking situations. 展开更多
关键词 WLAN indoor location fuzzy clustering principal component artificial neural network radio-map
下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
9
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
下载PDF
Adding-Point Strategy for Reduced-Order Hypersonic Aerothermodynamics Modeling Based on Fuzzy Clustering 被引量:7
10
作者 CHEN Xin LIU Li +1 位作者 ZHOU Sida YUE Zhenjiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期983-991,共9页
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con... Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy. 展开更多
关键词 reduced order model fuzzy clustering hypersonic aerothermodynamics adding-point strategy
下载PDF
Road Surface Modeling and Representation from Point Cloud Based on Fuzzy Clustering 被引量:5
11
作者 ZHANG Yi YAN Li 《Geo-Spatial Information Science》 2007年第4期276-281,共6页
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of... A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface. 展开更多
关键词 surface modeling point cloud distance-weighted fitting fuzzy clustering normal vectors INTENSITY
下载PDF
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:4
12
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
下载PDF
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
13
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification Principal component analysis Simulated annealing genetic algorithm fuzzy cluster means
下载PDF
Fuzzy cluster analysis of water mass in the western Taiwan Strait in spring 2019
14
作者 Zhiyuan Hu Jia Zhu +4 位作者 Longqi Yang Zhenyu Sun Xin Guo Zhaozhang Chen Linfeng Huang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期1-8,共8页
The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the wester... The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait. 展开更多
关键词 water mass classification western Taiwan Strait fuzzy cluster analysis T-S similarity number
下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:3
15
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy C-means clustering particle swarm optimization two-dimensional histogram
下载PDF
Fuzzy Clustering Method for Web User Based on Pages Classification 被引量:2
16
作者 ZHANLi-qiang LIUDa-xin 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期553-556,共4页
A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the... A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the site, then computes fuzzy degree of cross page through aggregating on data of Web log. After that, by using fuzzy comprehensive evaluation method, the method constructs user interest vectors according to page viewing times and frequency of hits, and derives the fuzzy similarity matrix from the interest vectors for the Web users. Finally, it gets the clustering result through the fuzzy clustering method. The experimental results show the effectiveness of the method. Key words Web log mining - fuzzy similarity matrix - fuzzy comprehensive evaluation - fuzzy clustering CLC number TP18 - TP311 - TP391 Foundation item: Supported by the Natural Science Foundation of Heilongjiang Province of China (F0304)Biography: ZHAN Li-qiang (1966-), male, Lecturer, Ph. D. research direction: the theory methods of data mining and theory of database. 展开更多
关键词 Web log mining fuzzy similarity matrix fuzzy comprehensive evaluation fuzzy clustering
下载PDF
A Novel Soft Clustering Method for Detection of Exudates
17
作者 Kittipol Wisaeng 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期1039-1058,共20页
One of the earliest indications of diabetes consequence is Diabetic Retinopathy(DR),the main contributor to blindness worldwide.Recent studies have proposed that Exudates(EXs)are the hallmark of DR severity.The presen... One of the earliest indications of diabetes consequence is Diabetic Retinopathy(DR),the main contributor to blindness worldwide.Recent studies have proposed that Exudates(EXs)are the hallmark of DR severity.The present study aims to accurately and automatically detect EXs that are difficult to detect in retinal images in the early stages.An improved Fusion of Histogram-Based Fuzzy C-Means Clustering(FHBFCM)by a New Weight Assignment Scheme(NWAS)and a set of four selected features from stages of pre-processing to evolve the detection method is proposed.The features of DR train the optimal parameter of FHBFCM for detecting EXs diseases through a stepwise enhancement method through the coarse segmentation stage.The histogram-based is applied to find the color intensity in each pixel and performed to accomplish Red,Green,and Blue(RGB)color information.This RGB color information is used as the initial cluster centers for creating the appropriate region and generating the homogeneous regions by Fuzzy C-Means(FCM).Afterward,the best expression of NWAS is used for the delicate detection stage.According to the experiment results,the proposed method successfully detects EXs on the retinal image datasets of DiaretDB0(Standard Diabetic Retinopathy Database Calibration level 0),DiaretDB1(Standard Diabetic Retinopathy Database Calibration level 1),and STARE(Structured Analysis of the Retina)with accuracy values of 96.12%,97.20%,and 93.22%,respectively.As a result,this study proposes a new approach for the early detection of EXs with competitive accuracy and the ability to outperform existing methods by improving the detection quality and perhaps significantly reducing the segmentation of false positives. 展开更多
关键词 Diabetic retinopathy retinal images histogram-based fuzzy C-means clustering EXUDATES
下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
18
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
下载PDF
Watershed classification by remote sensing indices: A fuzzy c-means clustering approach 被引量:10
19
作者 Bahram CHOUBIN Karim SOLAIMANI +1 位作者 Mahmoud HABIBNEJAD ROSHAN Arash MALEKIAN 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2053-2063,共11页
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident... Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures. 展开更多
关键词 Karkheh watershed fuzzy c-means clustering Watershed classification Homogeneous sub-watersheds
下载PDF
User preferences-aware recommendation for trustworthy cloud services based on fuzzy clustering 被引量:1
20
作者 马华 胡志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3495-3505,共11页
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon... The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario. 展开更多
关键词 trustworthy service service recommendation user preferences-aware fuzzy clustering
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部