期刊文献+
共找到223篇文章
< 1 2 12 >
每页显示 20 50 100
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
1
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
下载PDF
基于改进FNN-CCC的双伺服压力机同步控制策略研究
2
作者 宋燕利 程寅峰 +2 位作者 曹威圣 路珏 杨真国 《精密成形工程》 北大核心 2023年第9期175-182,共8页
目的改善双伺服压力机同步控制策略的动态响应性能和鲁棒性,提升双伺服压力机的单轴跟踪精度和双轴同步精度,实现成形过程的高精度位置控制。方法建立双伺服压力机驱动系统数学模型,分析系统同步误差来源,结合模糊神经网络单轴控制算法... 目的改善双伺服压力机同步控制策略的动态响应性能和鲁棒性,提升双伺服压力机的单轴跟踪精度和双轴同步精度,实现成形过程的高精度位置控制。方法建立双伺服压力机驱动系统数学模型,分析系统同步误差来源,结合模糊神经网络单轴控制算法,引入迭代学习律,设计一种改进模糊神经网络-交叉耦合(FNN-CCC)同步控制器。基于系统控制模型进行单轴阶跃响应特性与双轴正弦跟随特性仿真,搭建嵌入式双伺服压力机驱动系统试验平台,在偏载干扰条件下进行双轴同步控制试验,验证所提出理论的有效性。结果仿真结果表明,与模糊控制算法和BP神经网络控制算法相比,该控制器单轴控制算法的超调量分别减少了11.5%和25.5%,调节时间分别减少了48.8%和34.4%,具有更好的动态响应性能。与原控制器相比,改进后的交叉耦合同步控制器最大双轴同步误差降低了65.7%,同步控制精度有所提高。试验结果表明,与传统PID-交叉耦合控制器相比,改进的FNN-CCC控制器有更好的控制性能,在热冲压合模成形阶段,单轴跟踪误差分别减小了81.8%和75.0%,双轴同步误差减小了69.2%。结论所提出的同步控制策略在偏载干扰条件下具有较好的动态响应性能和鲁棒性,能够使同步误差快速收敛,提高了双伺服压力机驱动系统的单轴跟踪精度和双轴同步控制精度,实现了对双伺服压力机的高精度控制。 展开更多
关键词 双伺服压力机 模糊神经网络 交叉耦合控制 同步控制 迭代学习
下载PDF
基于模糊神经网络(FNN)的赤潮预警预测研究 被引量:17
3
作者 王洪礼 葛根 李悦雷 《海洋通报》 CAS CSCD 北大核心 2006年第4期36-41,共6页
为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好... 为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好地反演出各种理化因子与夜光藻密度的非线性对应变化规律,有更好的预测功能。 展开更多
关键词 赤潮预测 模糊神经网络(fnn) BP算法
下载PDF
EFNN——一种增强型模糊神经网络 被引量:3
4
作者 陈保国 朱奕 +1 位作者 张华 张家余 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2001年第1期89-92,共4页
提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网... 提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网络具有较强的非线性逼近能力和较快的学习速度 . 展开更多
关键词 特征网络 功能网络 增强型模型神经网络 梯度算法
下载PDF
基于FNN解耦纸张定量水分控制策略的研究与应用 被引量:4
5
作者 胡亚南 马文明 王孟效 《中国造纸》 CAS 北大核心 2017年第7期48-53,共6页
针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制... 针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制规则及解耦补偿参数,成功地将纸张抄造过程的多变量系统转变为单变量系统,实现纸张定量、水分之间的解耦。仿真结果表明,采用FNN解耦控制器具有较好的动态响应和较强的鲁棒性。将该策略应用于国内某造纸厂的纸板机控制系统,纸张定量控制精度为±3.9 g/m^2左右,水分控制精度为±1.0%左右,满足该纸机定量水分高精度控制要求。 展开更多
关键词 定量 水分 模糊控制 神经网络 fnn
下载PDF
基于QPSO-FNN的混沌时间序列预测 被引量:3
6
作者 潘玉民 邓永红 张全柱 《计算机应用与软件》 CSCD 北大核心 2013年第8期91-94,98,共5页
提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-m... 提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-ma模糊神经网络以高斯基函数作为模糊子集的隶属度函数,在线动态调整隶属度函数和结论参数,并采用量子粒子群算法(QPSO)优化网络初始参数,提高预测准确度。该模型具有物理意义清晰、预测精度高以及预测结果确定等优点,仿真实验结果证明了该方法的有效性。 展开更多
关键词 混沌时间序列 太阳黑子 混合pi-sigma 模糊神经网络 QPSO-fnn 预测
下载PDF
基于粗糙集高速公路混沌T-S FNN控制仿真 被引量:4
7
作者 庞明宝 贺国光 +1 位作者 赵新萍 东方 《系统仿真学报》 CAS CSCD 北大核心 2012年第2期370-376,共7页
研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,... 研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,红灯时间作为输出的T-S模糊神经网络混沌控制器;采用粗糙集理论建立混沌控制器知识库,确定模糊神经网络控制器结构并提取模糊规则;采用模糊神经网络方法对控制器参数进行优化。仿真结果表明:采用该方法设计的智能混沌控制器,可实现保持高速公路有序运动、避免交通堵塞、提高交通通行能力的目的,是提高高速公路管理控制水平的有效方法。 展开更多
关键词 高速公路 混沌控制 T-S模糊神经网络 粗糙集 模糊C-均值聚类 仿真
下载PDF
高斯激活函数特征值分解修剪技术的D-FNN算法研究 被引量:3
8
作者 何正风 张德丰 孙亚民 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期34-39,共6页
提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获... 提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获得更为紧凑的D-FNN结构,避免了过拟合现象。最后通过对Her-mite多项式逼近能力来验证所提方案的有效性。仿真结果表明使用特征值分解修剪技术和高斯激活函数的D-FNN具有良好的性能。 展开更多
关键词 动态模糊神经网络 模糊规则 修剪技术 特征值分解
下载PDF
基于FNN的覆冰机器人越障机械臂轨迹跟踪控制 被引量:2
9
作者 郝晓弘 刘晓鹏 +1 位作者 岳和平 张帆 《计算机工程与应用》 CSCD 北大核心 2010年第8期232-233,237,共3页
覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具... 覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具有很好的效果,表明控制策略和理论分析的可行性。 展开更多
关键词 输电线路 覆冰机器人 模糊神经网络 自适应性
下载PDF
FNN在数据库模糊查询中的研究 被引量:2
10
作者 陈逸菲 张颖超 《计算机应用研究》 CSCD 北大核心 2004年第11期44-46,共3页
提出了一种基于模糊神经网络对数据库模糊查询的新方法,将模糊理论、模糊神经网络与数据库系统相结合。利用FNN直接生成隶属函数,来完成模糊查询,避免了直接指定隶属函数所带来的主观性,并能较好地反映数据的特征。
关键词 模糊神经网络 隶属函数 模糊查询 数据库
下载PDF
基于规则产生准则与修剪策略的D-FNN算法研究 被引量:2
11
作者 左军 周灵 李晓东 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期43-48,共6页
提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与... 提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与相关算法作比较,从而发现了D-FNN的独特思想。编写了D-FNN的仿真程序,对具体案例进行了仿真。结果表明,D-FNN具有紧凑的结构和优秀的性能。 展开更多
关键词 动态模糊神经网络 径向基函数 模糊规则 修剪策略
下载PDF
FNN上的反向传播学习算法 被引量:2
12
作者 毛国君 宋广军 杨名生 《计算机应用与软件》 CSCD 1998年第4期34-38,共5页
近几年来,模糊神经网络(FNN)的研究引起了广泛的注意。本文对FNN上的反向传播学习方法加以讨论。使用输入均值和输出权重参量来进行模糊化和反模糊化处理,学习的目的是调整这两个参量到合适的值。
关键词 模糊神经网络 反向传播学习 算法
下载PDF
基于D-FNN的开关磁阻无位置传感器的研究 被引量:2
13
作者 吴江潦 易灵芝 +1 位作者 邓文浪 刘香 《传感器与微系统》 CSCD 北大核心 2011年第1期66-69,89,共5页
提出了一种基于扩展径向基函数(RBF)神经网络的动态模糊神经网络(D-FNN)的开关磁阻电机无位置传感器控制的新方法。动态模糊神经网络系统以在线采样的相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流和磁链、转子位置角... 提出了一种基于扩展径向基函数(RBF)神经网络的动态模糊神经网络(D-FNN)的开关磁阻电机无位置传感器控制的新方法。动态模糊神经网络系统以在线采样的相绕组的电流和磁链为输入,以转子位置角度为输出,从而建立起电流和磁链、转子位置角度的非线性映射关系;训练完成后,用D-FNN输出结果取代位置传感器角度信号,实现电机无位置传感器运行。仿真和实验结果表明:由D-FNN获得的角度信号和由位置传感器获得的角度信号相比误差小,电机能够准确换相,且输出转矩波动小,转速曲线平滑,电机在无位置传感器下运行良好。 展开更多
关键词 开关磁阻电机 动态模糊神经网络 无位置传感器 转子位置检测
下载PDF
基于改进FNN的危险化学品运输事故智能预测 被引量:2
14
作者 匡蕾 王斌 《中国安全科学学报》 CAS CSCD 北大核心 2012年第9期97-102,共6页
为提高危险化学品运输事故预测水平,提出一种改进的模糊神经网络(FNN)模型。实现对危险化学品运输事故起数的智能预测。首先分析危险化学品运输的危险源因素集,确定危险源因素集包含实值型和经验型2类数据。然后设计一种数据融合模型,... 为提高危险化学品运输事故预测水平,提出一种改进的模糊神经网络(FNN)模型。实现对危险化学品运输事故起数的智能预测。首先分析危险化学品运输的危险源因素集,确定危险源因素集包含实值型和经验型2类数据。然后设计一种数据融合模型,该模型通过模糊综合评价来精简FNN结构,在此基础上给出改进的危险化学品运输事故的智能预测算法。最后给出改进的危险化学品运输事故的智能预测算法,并以我国2005—2010年期间每个月发生的危险化学品运输事故起数为数据基础进行计算。结果表明,改进模型的预测精度和各种误差均明显好于普通预测模型,预测结果能够反映危险化学品运输事故的实际情况。 展开更多
关键词 危险化学品 运输事故 智能预测 数据融合 模糊神经网络(fnn)
下载PDF
基于GD-FNN的金融股指预测模型 被引量:5
15
作者 孙彬 李铁克 张文学 《计算机应用研究》 CSCD 北大核心 2010年第9期3272-3275,3278,共5页
针对股票市场内部结构复杂性和外部因素多变性,构建一种基于椭圆基函数且能够动态调整网络结构的广义动态模糊神经网络模型对金融股指进行预测。以上证指数为例,在价格和成交量的基础上,将与股票市场密切相关的宏观经济指标引入模型预... 针对股票市场内部结构复杂性和外部因素多变性,构建一种基于椭圆基函数且能够动态调整网络结构的广义动态模糊神经网络模型对金融股指进行预测。以上证指数为例,在价格和成交量的基础上,将与股票市场密切相关的宏观经济指标引入模型预测指标体系。通过滑动时间窗对数据集进行处理,提高了模型预测准确性并降低了运算时间。与其他神经网络模型预测效果进行比较,结果表明提出的模型具有较好的预测效果。 展开更多
关键词 广义动态模糊神经网络 金融股指预测 预测指标体系 动态模糊规则抽取 滑动时间窗 金融非线性系统辨识
下载PDF
前馈神经网络在预测连续泄漏系数中的应用
16
作者 何娟霞 黄丽文 +1 位作者 蒋文豪 段青山 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2179-2189,共11页
受泄漏孔几何参数、液位、液体物理特性及流动状态等因素影响,储罐连续泄漏系数难以直接采用流体力学建模求解。通过常压立式储罐连续泄漏试验获取数据样本,利用前馈神经网络(Feedforward Neural Network, FNN)算法构建连续泄漏系数(Cs... 受泄漏孔几何参数、液位、液体物理特性及流动状态等因素影响,储罐连续泄漏系数难以直接采用流体力学建模求解。通过常压立式储罐连续泄漏试验获取数据样本,利用前馈神经网络(Feedforward Neural Network, FNN)算法构建连续泄漏系数(Cs)与输入变量间的非线性关系,建立基于前馈神经网络算法的Cs预测模型。模型性能评估结果表明,模型的平均绝对误差(EMA)、解释方差分(SEV)及决定系数(R2)分别为0.015 4、0.949 2及0.948 2,表明模型预测性能良好。与相应连续泄漏试验值比较,预测Cs的总平均绝对偏差范围为5.28%~7.34%,质量流率平均偏差为4.60%~6.51%,连续泄漏量的平均偏差为0.84%~2.03%,模型预测结果优于采用泄漏经验常数的计算结果,证明该模型可有效预测连续泄漏期间Cs值及变化趋势。 展开更多
关键词 安全工程 储罐连续泄漏 泄漏系数 深度学习 前馈神经网络(fnn) 预测模型
下载PDF
基于FNN的电动汽车自适应横向稳定性控制 被引量:8
17
作者 袁小芳 陈秋伊 +1 位作者 黄国明 史可 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第8期98-104,共7页
针对分布式驱动电动汽车(Distributed drive electric vehicles,DDEV)在急转弯时出现的不足转向和侧向失稳等不确定性稳定问题,提出了一种基于模糊神经网络(Fuzzy Neural Network,FNN)的自适应横向稳定性控制系统.该系统包括上级直接横... 针对分布式驱动电动汽车(Distributed drive electric vehicles,DDEV)在急转弯时出现的不足转向和侧向失稳等不确定性稳定问题,提出了一种基于模糊神经网络(Fuzzy Neural Network,FNN)的自适应横向稳定性控制系统.该系统包括上级直接横摆力矩控制器和下级转矩分配控制器.其中,上级直接横摆力矩控制器根据不确定因素产生的质心侧偏角误差得到期望的直接横摆力矩;下级转矩分配控制器将上级控制器输出的直接横摆力矩按轮胎载荷分配至每个轮毂电机,实现高效调整汽车姿态,提高汽车的转向能力和侧向稳定性.仿真实验表明,所提出的控制系统显著提升了DDEV的侧向稳定性,表现出较传统模糊控制更好的控制效果. 展开更多
关键词 DDEV 横向稳定性 不确定性 横摆力矩 模糊神经网络
下载PDF
列主元SVD-QR方法修剪策略参数调整的D-FNN算法研究 被引量:1
18
作者 张德丰 马子龙 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期8-13,共6页
针对动态模糊神经网络,提出了列主元SVD-QR方法修剪策略与参数调整的新算法。其中采用列主元SVD-QR方法修剪策略从给定的规则库中提取最重要模糊规则,使得网络结构不会持续增长,避免了过拟合及过训练现象;采用扩展的卡尔曼滤波方法把全... 针对动态模糊神经网络,提出了列主元SVD-QR方法修剪策略与参数调整的新算法。其中采用列主元SVD-QR方法修剪策略从给定的规则库中提取最重要模糊规则,使得网络结构不会持续增长,避免了过拟合及过训练现象;采用扩展的卡尔曼滤波方法把全局算法划分成线性和非线性部分,线性和非线性参数可以分别被更新,从而可以达到快速的学习速度。通过对血压的控制来验证所提出算法的有效性,结果证明了列主元SVD-QR方法修剪策略参数调整的D-FNN算法具有良好的性能。 展开更多
关键词 动态模糊神经网络 修剪策略 参数调整 血压控制
下载PDF
基于FTA和FNN的液压系统故障诊断方法研究 被引量:3
19
作者 游张平 叶晓平 +1 位作者 朱银法 胡笑奇 《机械科学与技术》 CSCD 北大核心 2013年第12期1855-1858,共4页
针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家... 针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家经验知识,建立模糊神经网络诊断模型及并提取训练数据,在此基础上,运用统计参数法确定模糊预处理所需的模糊隶属函数。将训练好的网络模型应用于实例诊断,实验结果验证了该方法的实用性和有效性。 展开更多
关键词 液压系统 故障诊断 故障树分析 神经网络
下载PDF
GA优化TS-FNN的架空线路荷载风险预测 被引量:2
20
作者 倪良华 肖李俊 +2 位作者 吕干云 汤智谦 朱天宇 《新型工业化》 2016年第7期1-8,共8页
极端天气下组合荷载的冲击对架空线的运行可靠性产生严重影响,研究架空线路风险预测与评估在预防线路事故中具有现实意义。架空线路荷载风险预测属于求解强耦合时变非线性系统问题,难以建立精确的数学模型求解。基于线路荷载-强度的随... 极端天气下组合荷载的冲击对架空线的运行可靠性产生严重影响,研究架空线路风险预测与评估在预防线路事故中具有现实意义。架空线路荷载风险预测属于求解强耦合时变非线性系统问题,难以建立精确的数学模型求解。基于线路荷载-强度的随机特性与干涉原理以及模糊预测理论,建立了基于GA优化T-S模糊神经网络的线路风险预测模型,提取极端天气下的气象信息典型特征值风速、覆冰厚度、降雨量、气温作为模型输入量,以线路失效概率划分的时间尺度上线路的荷载风险状态作为预测输出量,并采用遗传算法对模糊神经网络参数进行优化。同采用传统理论计算模型和自适应模糊神经网络模型相比,所建立模型具有计算速度快、预测准确度高的优点。具体应用实例验证了模型的实用性和高效性。 展开更多
关键词 架空线路 荷载风险预测 失效概率 T-S模糊神经网络(TS-fnn) 遗传算法
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部