In clinical in vitro fertilization (IVF), optimal culture conditions are required for production of high quality embryos and for achieving high pregnancy rates. Cell culture systems require vigilant attention to quali...In clinical in vitro fertilization (IVF), optimal culture conditions are required for production of high quality embryos and for achieving high pregnancy rates. Cell culture systems require vigilant attention to quality control and quality assurance, and upgrades to equipment and procedures require strenuous deliberation. During a 2-week maintenance period, we undertook an extensive analysis of incubator carbon dioxide (CO2) monitoring and the effect on culture media pH by comparing our traditional liquid Fyrite instruments to a certified and calibrated digital CO2 analyzer. The digital analyzer produced consistently lower CO2 readings and significantly greater precision than the liquid Fyrite. Media pH measurements showed significant variation depending on CO2 calibration device;however pH remained within manufacturers’ specifications. After superior performance by the digital analyzer, we incorporated this device into the incubator calibration and daily quality control procedures. A retrospective comparison of overall lab performance before and after this equipment switch demonstrated improved clinical pregnancy and implantation rates. This report illustrates the necessary caution when altering established laboratory procedures and equipment while highlighting the benefits of judiciously updating techniques and equipment in a laboratory setting that is often stubborn to change pre-existing, ingrained methodology.展开更多
文摘In clinical in vitro fertilization (IVF), optimal culture conditions are required for production of high quality embryos and for achieving high pregnancy rates. Cell culture systems require vigilant attention to quality control and quality assurance, and upgrades to equipment and procedures require strenuous deliberation. During a 2-week maintenance period, we undertook an extensive analysis of incubator carbon dioxide (CO2) monitoring and the effect on culture media pH by comparing our traditional liquid Fyrite instruments to a certified and calibrated digital CO2 analyzer. The digital analyzer produced consistently lower CO2 readings and significantly greater precision than the liquid Fyrite. Media pH measurements showed significant variation depending on CO2 calibration device;however pH remained within manufacturers’ specifications. After superior performance by the digital analyzer, we incorporated this device into the incubator calibration and daily quality control procedures. A retrospective comparison of overall lab performance before and after this equipment switch demonstrated improved clinical pregnancy and implantation rates. This report illustrates the necessary caution when altering established laboratory procedures and equipment while highlighting the benefits of judiciously updating techniques and equipment in a laboratory setting that is often stubborn to change pre-existing, ingrained methodology.