The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the...The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.展开更多
G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducte...G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.展开更多
The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO_2, has been studied in the lab using an atmospheric corrosion monitor (ACM) in combination with XRD and SEM...The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO_2, has been studied in the lab using an atmospheric corrosion monitor (ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO_2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.展开更多
Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this ori...Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel, cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.展开更多
Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The resu...Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.展开更多
Due to traffic and wave actions, cast steel joints are subjected to variable-amplitude fatigue loading, which may cause fatigue problems. The ratio of the minimum strain to the maximum strain(strain ratio)can be emplo...Due to traffic and wave actions, cast steel joints are subjected to variable-amplitude fatigue loading, which may cause fatigue problems. The ratio of the minimum strain to the maximum strain(strain ratio)can be employed to analyze the influence of variable-amplitude fatigue both in the elastic and plastic ranges. To evaluate the effect of the strain ratio on G20Mn5 QT cast steel, the fatigue tests of smooth specimens were carried out at the strain ratio of 0.1. The cyclic deformation and the relationships between the strain amplitude, the stress amplitude, the Smith, Watson and Topper(SWT)parameter and fatigue life were studied and compared with those at the strain ratio of-1. Compared with other methods, Basquin formula and Solonberg formula provide reliable and appropriate ranges of S-N curve and fatigue limit at different strain ratios respectively. The SWT parameter can be used to predict the fatigue life at other strain ratios accurately.展开更多
Zincalume steel(G550)is commonly used in various construction fields because of its high corrosion resistance and good mechanical properties.In recent years,a number of steel companies have massively produced zincalum...Zincalume steel(G550)is commonly used in various construction fields because of its high corrosion resistance and good mechanical properties.In recent years,a number of steel companies have massively produced zincalume steel(G550)with large volumes of waste.For the reduction of massive industrial wastes,the zincalume steel(G550)was welded in the lap joint configuration using different welding parameters in the metal inert gas(MIG)welding and laser beam welding(LBW)process in this study.The MIG welding and LBW are more welcomed welding methods due to their high efficiency and low cost.However,they are different as the LBW offers welding speed three to five times faster than MIG welding,while LBW’s heat transfer to workpieces is much less than MIG welding,which can avoid some distortions.The microstructure of zincalume steel(G550)was investigated using scanning electron microscopy(SEM)and the microstructure characterizations of welded specimens were analyzed.The experiment found the columnar dendrites extended under the heat flow direction during the MIG welding and LBW process.Thus,the columnar grains were formed in between the equiaxed zone and fusion zone(FZ)at high heat input and slow cooling rate.Moreover,the grain size of FZ was comparatively smaller than heat affected zone(HAZ)and base metal(BM).展开更多
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement...To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFB3705300)the National Natural Science Foundation of China(Nos.U1960204 and 51974199)the Postdoctoral Fellowship Program of CPSF(No.GZB20230515)。
文摘The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.
文摘G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.
基金the National Natural Science Foundation of China!(No. 59871051)
文摘The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO_2, has been studied in the lab using an atmospheric corrosion monitor (ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO_2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.
文摘Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel, cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.
文摘Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.
基金Supported by the National Natural Science Foundation of China(No.51178307 and No.51525803)
文摘Due to traffic and wave actions, cast steel joints are subjected to variable-amplitude fatigue loading, which may cause fatigue problems. The ratio of the minimum strain to the maximum strain(strain ratio)can be employed to analyze the influence of variable-amplitude fatigue both in the elastic and plastic ranges. To evaluate the effect of the strain ratio on G20Mn5 QT cast steel, the fatigue tests of smooth specimens were carried out at the strain ratio of 0.1. The cyclic deformation and the relationships between the strain amplitude, the stress amplitude, the Smith, Watson and Topper(SWT)parameter and fatigue life were studied and compared with those at the strain ratio of-1. Compared with other methods, Basquin formula and Solonberg formula provide reliable and appropriate ranges of S-N curve and fatigue limit at different strain ratios respectively. The SWT parameter can be used to predict the fatigue life at other strain ratios accurately.
基金This research was supported in part by the SEGi University Sdn Bhd(Grant Number:SEGiIRF/2018-10/FoEBE-17/80)and in kind contribution of University of Malaya.
文摘Zincalume steel(G550)is commonly used in various construction fields because of its high corrosion resistance and good mechanical properties.In recent years,a number of steel companies have massively produced zincalume steel(G550)with large volumes of waste.For the reduction of massive industrial wastes,the zincalume steel(G550)was welded in the lap joint configuration using different welding parameters in the metal inert gas(MIG)welding and laser beam welding(LBW)process in this study.The MIG welding and LBW are more welcomed welding methods due to their high efficiency and low cost.However,they are different as the LBW offers welding speed three to five times faster than MIG welding,while LBW’s heat transfer to workpieces is much less than MIG welding,which can avoid some distortions.The microstructure of zincalume steel(G550)was investigated using scanning electron microscopy(SEM)and the microstructure characterizations of welded specimens were analyzed.The experiment found the columnar dendrites extended under the heat flow direction during the MIG welding and LBW process.Thus,the columnar grains were formed in between the equiaxed zone and fusion zone(FZ)at high heat input and slow cooling rate.Moreover,the grain size of FZ was comparatively smaller than heat affected zone(HAZ)and base metal(BM).
基金founded by the National Natural Science Foundation of China(Grant No.51708163)Research Program of the Ministry of Transport of the People’s Republic of China(Grant No.2013318800020)Doctoral Innovation Fund Program of Southwest Jiaotong University(Grant No.D-CX201703)
文摘To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone.