In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
Let G be a graph, and g and f be integer valued functions defined on V(G) which satisfy g(x)≤f(x) and g(x)≡f(x)(mod 2) for all x∈V(G). Then a spanning subgraph F of G is called a {g,g+2,…,f} -factor if deg_F(x)∈{...Let G be a graph, and g and f be integer valued functions defined on V(G) which satisfy g(x)≤f(x) and g(x)≡f(x)(mod 2) for all x∈V(G). Then a spanning subgraph F of G is called a {g,g+2,…,f} -factor if deg_F(x)∈{g(x),g(x)+2,…,f(x)} for all x∈V(G), when g(x)=1 for all x∈V(G), such a factor is called (1,f) -odd-factor. We give necessary and sufficient conditions for a graph G to have a {g,g+2,…,f} -factor and a (1,f) -odd-factor which contains an arbitrarily given edge of G, from that we derive some interesting results.展开更多
A transition diagram is used to describe the behavior of systems. Birth-death equations were derived from transition diagram depicting the state of the birth-death processes. Queue models and characteristics of queue ...A transition diagram is used to describe the behavior of systems. Birth-death equations were derived from transition diagram depicting the state of the birth-death processes. Queue models and characteristics of queue models are also derivable from birth-death processes. These queue models consist of mathematical formulas and relationships that can be used to determine the operating characteristics (performance measures) for a waiting line. Schematic and transition diagrams of different single server queue models were shown. Relationships between birth-death processes, waiting lines (queues) and transition diagrams were given. While M/M/I/K queue model states was limited by K customers and had (K+I) states, M/M/1/1 queue model had only two states. M/G/1/∝/∝ and M/M/1/∝/∝ shared similar characteristics. Many ideal queuing situations employ M/M/1 queueing model.展开更多
Let G be a finite simple graph. A G-design (G-packing design, G-covering design) of λKv, denoted by (v, G,λ)-GD ((v, G, λ)-PD, (v, G,λ)-CD), is a pair (X,B) where X is the vertex set of Kv and B is a collection of...Let G be a finite simple graph. A G-design (G-packing design, G-covering design) of λKv, denoted by (v, G,λ)-GD ((v, G, λ)-PD, (v, G,λ)-CD), is a pair (X,B) where X is the vertex set of Kv and B is a collection of subgraphs of Kv, called blocks, such that each block is isomorphic to G and any two distinct vertices in Kv are joined in exactly (at most, at least) λ blocks of B. A packing (covering) design is said to be maximum (minimum) if no other such packing (covering) design has more (fewer) blocks. In this paper, we determine the existence spectrum for the K2,3-designs of λKv,λ> 1, and construct the maximum packing designs and the minimum covering designs of λKv with K2,3 for any integer λ.展开更多
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
文摘Let G be a graph, and g and f be integer valued functions defined on V(G) which satisfy g(x)≤f(x) and g(x)≡f(x)(mod 2) for all x∈V(G). Then a spanning subgraph F of G is called a {g,g+2,…,f} -factor if deg_F(x)∈{g(x),g(x)+2,…,f(x)} for all x∈V(G), when g(x)=1 for all x∈V(G), such a factor is called (1,f) -odd-factor. We give necessary and sufficient conditions for a graph G to have a {g,g+2,…,f} -factor and a (1,f) -odd-factor which contains an arbitrarily given edge of G, from that we derive some interesting results.
文摘A transition diagram is used to describe the behavior of systems. Birth-death equations were derived from transition diagram depicting the state of the birth-death processes. Queue models and characteristics of queue models are also derivable from birth-death processes. These queue models consist of mathematical formulas and relationships that can be used to determine the operating characteristics (performance measures) for a waiting line. Schematic and transition diagrams of different single server queue models were shown. Relationships between birth-death processes, waiting lines (queues) and transition diagrams were given. While M/M/I/K queue model states was limited by K customers and had (K+I) states, M/M/1/1 queue model had only two states. M/G/1/∝/∝ and M/M/1/∝/∝ shared similar characteristics. Many ideal queuing situations employ M/M/1 queueing model.
文摘Let G be a finite simple graph. A G-design (G-packing design, G-covering design) of λKv, denoted by (v, G,λ)-GD ((v, G, λ)-PD, (v, G,λ)-CD), is a pair (X,B) where X is the vertex set of Kv and B is a collection of subgraphs of Kv, called blocks, such that each block is isomorphic to G and any two distinct vertices in Kv are joined in exactly (at most, at least) λ blocks of B. A packing (covering) design is said to be maximum (minimum) if no other such packing (covering) design has more (fewer) blocks. In this paper, we determine the existence spectrum for the K2,3-designs of λKv,λ> 1, and construct the maximum packing designs and the minimum covering designs of λKv with K2,3 for any integer λ.