The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In additio...The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In addition,the Lorentz force is taken into account.The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation.The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB.The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.The magnetic field has a different influence(in terms of trends)on velocity and concentration.展开更多
Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson mod...Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature(CST)and Prescribed Surface Temperature(PST).The study employs a two-phase model for the nanofluid,coupled with thermophoresis and Brownian motion,to analyze the effects of key fluid parameters such as thermophoresis,Brownian motion,slip velocity,Schmidt number,Eckert number,magnetic parameter,and non-linear stretching parameter on the velocity,concentration,and temperature profiles of the nanofluid.The proposed model is novel as it simultaneously considers the impact of thermophoresis and Brownian motion,along with Ohmic and viscous dissipation effects,in both CST and PST scenarios for blood-based Casson nanofluid.The numerical technique built into MATLAB’s bvp4c module is utilized to solve the governing system of coupled differential equations,revealing that the concentration of nanoparticles decreases with increasing thermophoresis and Brownian motion parameters while the temperature of the nanofluid increases.Additionally,a higher Eckert number is found to reduce the nanofluid temperature.A comparative analysis between CST and PST scenarios is also undertaken,which highlights the significant influence of these factors on the fluid’s characteristics.The findings have potential applications in biomedical processes to enhance fluid velocity and heat transfer rates,ultimately improving patient outcomes.展开更多
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
The problem of laminar fluid flow, which results from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energy, is in- vestigated numerically. The model used for the nano...The problem of laminar fluid flow, which results from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energy, is in- vestigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of thermal stratification. The sym- metry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations, namely, the scaling group of transfor- mations. An exact solution is obtained for the translation symmetrys, and the numerical solutions are obtained for the scaling symmetry. This solution depends on the Lewis number, the Brownian motion parameter, the thermal stratification parameter, and the thermophoretic parameter. The conclusion is drawn that the flow field, the temperature, and the nanoparticle volume fraction profiles are significantly influenced by these param- eters. Nanofluids have been shown to increase the thermal conductivity and convective heat transfer performance of base liquids. Nanoparticles in the base fluids also offer the potential in improving the radiative properties of the liquids, leading to an increase in the efficiency of direct absorption solar collectors.展开更多
In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain...In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.展开更多
The migration of living cells usually obeys the laws of Brownian motion.While the latter is due to the thermal motion of the surrounding matter,the locomotion of cells is generally associated with their vitality.We st...The migration of living cells usually obeys the laws of Brownian motion.While the latter is due to the thermal motion of the surrounding matter,the locomotion of cells is generally associated with their vitality.We study what drives cell migration and how to model memory effects in the Brownian motion of cells.The concept of temperament is introduced as an effective biophysical parameter driving the motion of living biological entities in analogy with the physical parameter of temperature,which dictates the movement of lifeless physical objects.The locomemory of cells is also studied via the generalized Langevin equation.We explore the possibility of describing cell locomemory via the Brownian self-similarity concept.An heuristic expression for the diffusion coefficient of cells on structured surfaces is derived.展开更多
Let Bt be an Ft Brownian motion and Gt be an enlargement of filtration of Ft from some Gaussian random variables. We obtain equations for ht such that Bt ht is a Gt-Brownian motion.
The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co...The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.展开更多
At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, th...At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.展开更多
This paper considers the compound Poisson risk model perturbed by Brownian motion with variable premium and dependence between claims amounts and inter-claim times via Spearman copula. It is assumed that the insurance...This paper considers the compound Poisson risk model perturbed by Brownian motion with variable premium and dependence between claims amounts and inter-claim times via Spearman copula. It is assumed that the insurance company’s portfolio is governed by two classes of policyholders. On the one hand, the first class where the amount of claims is high, and on the other hand, the second class where the amount of claims is low, this difference in claim amounts has significant implications for the insurance company’s pricing and risk management strategies. When policyholders are in the first class, they pay an insurance premium of a constant amount c<sub>1</sub> and when they are in the second class, the premium paid is a constant amount c<sub>2</sub> such that c<sub>1 </sub>> c<sub>2</sub>. The nature of claims (low or high) is measured via random thresholds . The study in this work will focus on the determination of the integro-differential equations satisfied by Gerber-Shiu functions and their Laplace transforms in the risk model perturbed by Brownian motion with variable premium and dependence between claims amounts and inter-claim times via Spearman copula. .展开更多
In this paper, we are concerned with Re?ected Geometric Brownian Motion (RGBM) with two barriers. And the stationary distribution of RGBM is derived by Markovian in?nitesimal Generator method. Consequently the ?rst pa...In this paper, we are concerned with Re?ected Geometric Brownian Motion (RGBM) with two barriers. And the stationary distribution of RGBM is derived by Markovian in?nitesimal Generator method. Consequently the ?rst passage time of RGBM is also discussed.展开更多
Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper report...Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.展开更多
We study in this paper the path properties of the Brownian motion and super-Brownian motion on the fractal structure-the Sierpinski gasket. At first some results about the limiting behaviour of its increments are obta...We study in this paper the path properties of the Brownian motion and super-Brownian motion on the fractal structure-the Sierpinski gasket. At first some results about the limiting behaviour of its increments are obtained and a kind of law of iterated logarithm is proved. Then A Lower bound of the spreading speed of its corresponding super-Brownian motion is obtained.展开更多
A family of tests for the presence of regression effect under proportional and non-proportional hazards models is described. The non-proportional hazards model, although not completely general, is very broad and inclu...A family of tests for the presence of regression effect under proportional and non-proportional hazards models is described. The non-proportional hazards model, although not completely general, is very broad and includes a large number of possibilities. In the absence of restrictions, the regression coefficient, β(t), can be any real function of time. When β(t) = β, we recover the proportional hazards model which can then be taken as a special case of a non-proportional hazards model. We study tests of the null hypothesis;H0:β(t) = 0 for all t against alternatives such as;H1:∫β(t)dF(t) ≠ 0 or H1:β(t) ≠ 0 for some t. In contrast to now classical approaches based on partial likelihood and martingale theory, the development here is based on Brownian motion, Donsker’s theorem and theorems from O’Quigley [1] and Xu and O’Quigley [2]. The usual partial likelihood score test arises as a special case. Large sample theory follows without special arguments, such as the martingale central limit theorem, and is relatively straightforward.展开更多
Fractional Brownian motion, continuous everywhere and differentiable nowhere, offers a convenient modeling for irregular nonstationary stochastic processes with long-term dependencies and power law behavior of spectru...Fractional Brownian motion, continuous everywhere and differentiable nowhere, offers a convenient modeling for irregular nonstationary stochastic processes with long-term dependencies and power law behavior of spectrum over wide ranges of frequencies. It shows high correlation at coarse scale and varies slightly at fine scale, which is suitable for and successful in describing and modeling natural scenes. On the other hand, man-made objects can be constructively well described by using a set of regular simple shape primitives such as line, cylinder, etc. and are free of fractal. Based on the difference, a method to discriminate man-made objects from natural scenes is provided. Experiments are used to demonstrate the good efficiency of developed technique.展开更多
In this paper, we propose the multiple Stratonovich integral driven by G-Brownian motion under the G-expectation framework. Then based on G-Itöformula, we obtain the relationship between Hermite polynomials a...In this paper, we propose the multiple Stratonovich integral driven by G-Brownian motion under the G-expectation framework. Then based on G-Itöformula, we obtain the relationship between Hermite polynomials and multiple G-Stratonovich integrals by using mathematical induction method.展开更多
The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying s...The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It6 formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained.展开更多
文摘The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined.The classical Navier-Stokes equations are considered in a porous frame.In addition,the Lorentz force is taken into account.The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation.The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB.The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.The magnetic field has a different influence(in terms of trends)on velocity and concentration.
基金funded by Universiti Teknikal Malaysia Melaka and Ministry of Higher Education(MoHE)Malaysia,grant number FRGS/1/2024/FTKM/F00586.
文摘Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature(CST)and Prescribed Surface Temperature(PST).The study employs a two-phase model for the nanofluid,coupled with thermophoresis and Brownian motion,to analyze the effects of key fluid parameters such as thermophoresis,Brownian motion,slip velocity,Schmidt number,Eckert number,magnetic parameter,and non-linear stretching parameter on the velocity,concentration,and temperature profiles of the nanofluid.The proposed model is novel as it simultaneously considers the impact of thermophoresis and Brownian motion,along with Ohmic and viscous dissipation effects,in both CST and PST scenarios for blood-based Casson nanofluid.The numerical technique built into MATLAB’s bvp4c module is utilized to solve the governing system of coupled differential equations,revealing that the concentration of nanoparticles decreases with increasing thermophoresis and Brownian motion parameters while the temperature of the nanofluid increases.Additionally,a higher Eckert number is found to reduce the nanofluid temperature.A comparative analysis between CST and PST scenarios is also undertaken,which highlights the significant influence of these factors on the fluid’s characteristics.The findings have potential applications in biomedical processes to enhance fluid velocity and heat transfer rates,ultimately improving patient outcomes.
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
文摘The problem of laminar fluid flow, which results from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energy, is in- vestigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of thermal stratification. The sym- metry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations, namely, the scaling group of transfor- mations. An exact solution is obtained for the translation symmetrys, and the numerical solutions are obtained for the scaling symmetry. This solution depends on the Lewis number, the Brownian motion parameter, the thermal stratification parameter, and the thermophoretic parameter. The conclusion is drawn that the flow field, the temperature, and the nanoparticle volume fraction profiles are significantly influenced by these param- eters. Nanofluids have been shown to increase the thermal conductivity and convective heat transfer performance of base liquids. Nanoparticles in the base fluids also offer the potential in improving the radiative properties of the liquids, leading to an increase in the efficiency of direct absorption solar collectors.
基金supported by the National Natural Science Foundation of China(11271020)the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)supported by the National Natural Science Foundation of China(11171062)
文摘In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.
基金Supported by the Alexander von Humboldt Foundation in the form of a Sofja Kovalevskaja Award funded by the Federal Ministry of Education,BMBF,the Bulgarian NSF through grant DRG 02/3 and the FP7 project BeyondEverest.
文摘The migration of living cells usually obeys the laws of Brownian motion.While the latter is due to the thermal motion of the surrounding matter,the locomotion of cells is generally associated with their vitality.We study what drives cell migration and how to model memory effects in the Brownian motion of cells.The concept of temperament is introduced as an effective biophysical parameter driving the motion of living biological entities in analogy with the physical parameter of temperature,which dictates the movement of lifeless physical objects.The locomemory of cells is also studied via the generalized Langevin equation.We explore the possibility of describing cell locomemory via the Brownian self-similarity concept.An heuristic expression for the diffusion coefficient of cells on structured surfaces is derived.
文摘Let Bt be an Ft Brownian motion and Gt be an enlargement of filtration of Ft from some Gaussian random variables. We obtain equations for ht such that Bt ht is a Gt-Brownian motion.
基金Supported by the National Natural Science Foundation of China(12101004)the Natural Science Research Project of Anhui Educational Committee(2023AH030021)the Research Startup Foundation for Introducing Talent of Anhui Polytechnic University(2020YQQ064)。
文摘The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41571417 and 61305042)the National Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+4 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)China Postdoctoral Science Foundation(Grant No.2016M602235)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.
文摘This paper considers the compound Poisson risk model perturbed by Brownian motion with variable premium and dependence between claims amounts and inter-claim times via Spearman copula. It is assumed that the insurance company’s portfolio is governed by two classes of policyholders. On the one hand, the first class where the amount of claims is high, and on the other hand, the second class where the amount of claims is low, this difference in claim amounts has significant implications for the insurance company’s pricing and risk management strategies. When policyholders are in the first class, they pay an insurance premium of a constant amount c<sub>1</sub> and when they are in the second class, the premium paid is a constant amount c<sub>2</sub> such that c<sub>1 </sub>> c<sub>2</sub>. The nature of claims (low or high) is measured via random thresholds . The study in this work will focus on the determination of the integro-differential equations satisfied by Gerber-Shiu functions and their Laplace transforms in the risk model perturbed by Brownian motion with variable premium and dependence between claims amounts and inter-claim times via Spearman copula. .
文摘In this paper, we are concerned with Re?ected Geometric Brownian Motion (RGBM) with two barriers. And the stationary distribution of RGBM is derived by Markovian in?nitesimal Generator method. Consequently the ?rst passage time of RGBM is also discussed.
文摘Recent developments in the measurement of radioactive gases in passive diffusion motivate the analysis of Brownian motion of decaying particles, a subject that has received little previous attention. This paper reports the derivation and solution of equations comparable to the Fokker-Planck and Langevin equations for one-dimensional diffusion and decay of unstable particles. In marked contrast to the case of stable particles, the two equations are not equivalent, but provide different information regarding the same stochastic process. The differences arise because Brownian motion with particle decay is not a continuous process. The discontinuity is readily apparent in the computer-simulated trajectories of the Langevin equation that incorporate both a Wiener process for displacement fluctuations and a Bernoulli process for random decay. This paper also reports the derivation of the mean time of first passage of the decaying particle to absorbing boundaries. Here, too, particle decay can lead to an outcome markedly different from that for stable particles. In particular, the first-passage time of the decaying particle is always finite, whereas the time for a stable particle to reach a single absorbing boundary is theoretically infinite due to the heavy tail of the inverse Gaussian density. The methodology developed in this paper should prove useful in the investigation of radioactive gases, aerosols of radioactive atoms, dust particles to which adhere radioactive ions, as well as diffusing gases and liquids of unstable molecules.
文摘We study in this paper the path properties of the Brownian motion and super-Brownian motion on the fractal structure-the Sierpinski gasket. At first some results about the limiting behaviour of its increments are obtained and a kind of law of iterated logarithm is proved. Then A Lower bound of the spreading speed of its corresponding super-Brownian motion is obtained.
文摘A family of tests for the presence of regression effect under proportional and non-proportional hazards models is described. The non-proportional hazards model, although not completely general, is very broad and includes a large number of possibilities. In the absence of restrictions, the regression coefficient, β(t), can be any real function of time. When β(t) = β, we recover the proportional hazards model which can then be taken as a special case of a non-proportional hazards model. We study tests of the null hypothesis;H0:β(t) = 0 for all t against alternatives such as;H1:∫β(t)dF(t) ≠ 0 or H1:β(t) ≠ 0 for some t. In contrast to now classical approaches based on partial likelihood and martingale theory, the development here is based on Brownian motion, Donsker’s theorem and theorems from O’Quigley [1] and Xu and O’Quigley [2]. The usual partial likelihood score test arises as a special case. Large sample theory follows without special arguments, such as the martingale central limit theorem, and is relatively straightforward.
文摘Fractional Brownian motion, continuous everywhere and differentiable nowhere, offers a convenient modeling for irregular nonstationary stochastic processes with long-term dependencies and power law behavior of spectrum over wide ranges of frequencies. It shows high correlation at coarse scale and varies slightly at fine scale, which is suitable for and successful in describing and modeling natural scenes. On the other hand, man-made objects can be constructively well described by using a set of regular simple shape primitives such as line, cylinder, etc. and are free of fractal. Based on the difference, a method to discriminate man-made objects from natural scenes is provided. Experiments are used to demonstrate the good efficiency of developed technique.
文摘In this paper, we propose the multiple Stratonovich integral driven by G-Brownian motion under the G-expectation framework. Then based on G-Itöformula, we obtain the relationship between Hermite polynomials and multiple G-Stratonovich integrals by using mathematical induction method.
基金supported by NSFC grant(11371169)China Automobile Industry Innovation and Development Joint Fund(U1564213)
文摘The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It6 formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained.