A transition diagram is used to describe the behavior of systems. Birth-death equations were derived from transition diagram depicting the state of the birth-death processes. Queue models and characteristics of queue ...A transition diagram is used to describe the behavior of systems. Birth-death equations were derived from transition diagram depicting the state of the birth-death processes. Queue models and characteristics of queue models are also derivable from birth-death processes. These queue models consist of mathematical formulas and relationships that can be used to determine the operating characteristics (performance measures) for a waiting line. Schematic and transition diagrams of different single server queue models were shown. Relationships between birth-death processes, waiting lines (queues) and transition diagrams were given. While M/M/I/K queue model states was limited by K customers and had (K+I) states, M/M/1/1 queue model had only two states. M/G/1/∝/∝ and M/M/1/∝/∝ shared similar characteristics. Many ideal queuing situations employ M/M/1 queueing model.展开更多
文摘A transition diagram is used to describe the behavior of systems. Birth-death equations were derived from transition diagram depicting the state of the birth-death processes. Queue models and characteristics of queue models are also derivable from birth-death processes. These queue models consist of mathematical formulas and relationships that can be used to determine the operating characteristics (performance measures) for a waiting line. Schematic and transition diagrams of different single server queue models were shown. Relationships between birth-death processes, waiting lines (queues) and transition diagrams were given. While M/M/I/K queue model states was limited by K customers and had (K+I) states, M/M/1/1 queue model had only two states. M/G/1/∝/∝ and M/M/1/∝/∝ shared similar characteristics. Many ideal queuing situations employ M/M/1 queueing model.