In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
In this paper, we introduce a G metric on the G-cone metric space and then prove that a complete G-cone metric space is always a complete G metric space and verify that a contractive mapping on the G-cone metric space...In this paper, we introduce a G metric on the G-cone metric space and then prove that a complete G-cone metric space is always a complete G metric space and verify that a contractive mapping on the G-cone metric space is a contractive mapping on the G metric space. At last, we also give a new way to obtain the unique fixed point on G-cone metric space.展开更多
In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in ...In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.展开更多
The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed ...The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed point results for self-mappings in various abstract spaces. We apply our results to get a bounded solution of a functional equation arising in dynamic programming.展开更多
In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theore...In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.展开更多
Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Ou...Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.展开更多
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
基金Supported by the Natural Science Foundation of Hubei Province Education Department (Q20132505) Supported by the PhD Start-up Fund of Hanshan Normal University of Guangdong Province(QD20110920)
文摘In this paper, we introduce a G metric on the G-cone metric space and then prove that a complete G-cone metric space is always a complete G metric space and verify that a contractive mapping on the G-cone metric space is a contractive mapping on the G metric space. At last, we also give a new way to obtain the unique fixed point on G-cone metric space.
文摘In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.
基金supported by Università degli Studi di Palermo,Local University Project R.S.ex 60%supported by MNTRRS-174009
文摘The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed point results for self-mappings in various abstract spaces. We apply our results to get a bounded solution of a functional equation arising in dynamic programming.
基金supported by the National Natural Science Foundation of China(No.11361064)the project No.174024 of the Ministry of Education,Science and Technological Department of the Republic of Serbia
文摘In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.
文摘Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.