Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ...Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data.展开更多
During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc...During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.展开更多
High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classifi...High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classification per-formance.However,identifying the optimal features within high-dimensional datasets remains a computationally demanding task,necessitating the use of efficient algorithms.This paper introduces the Arithmetic Optimization Algorithm(AOA),a novel approach for finding the optimal feature subset.AOA is specifically modified to address feature selection problems based on a transfer function.Additionally,two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision,slow convergence,and susceptibility to local optima.The first enhancement proposes a new method for selecting solutions to be improved during the search process.This method effectively improves the original algorithm’s accuracy and convergence speed.The second enhancement introduces a local search with neighborhood strategies(AOA_NBH)during the AOA exploitation phase.AOA_NBH explores the vast search space,aiding the algorithm in escaping local optima.Our results demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement over state-of-the-art methods.展开更多
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul...This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.展开更多
In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average...In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace.展开更多
In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solv...In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solving an equivalent functional equation. We obtain the necessary and sufficient conditions for the equality equation.展开更多
In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic i...In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.展开更多
In this paper, we analyse a new chaos-based cryptosystem with an embedded adaptive arithmetic coder, which was proposed by Li Heng-Jian and Zhang J S (Li H J and Zhang J S 2010 Chin. Phys. B 19 050508). Although thi...In this paper, we analyse a new chaos-based cryptosystem with an embedded adaptive arithmetic coder, which was proposed by Li Heng-Jian and Zhang J S (Li H J and Zhang J S 2010 Chin. Phys. B 19 050508). Although this new method has a better compression performance than its original version, it is found that there are some problems with its security and decryption processes. In this paper, it is shown how to obtain a great deal of plain text from the cipher text without prior knowledge of the secret key. After discussing the security and decryption problems of the Li Heng-Jian et al. algorithm, we propose an improved chaos-based cryptosystem with an embedded adaptive arithmetic coder that is more secure.展开更多
A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlat...A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.展开更多
A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged Navier-Stokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are ...A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged Navier-Stokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are transformed into the σ-coordinate system and the eddy viscosity is calculated with the standard k-ε turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit method for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a current over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.展开更多
When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite ...When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method (FEM). The two parameters, median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. ne solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.展开更多
For protecting the copyright of a text and recovering its original content harmlessly,this paper proposes a novel reversible natural language watermarking method that combines arithmetic coding and synonym substitutio...For protecting the copyright of a text and recovering its original content harmlessly,this paper proposes a novel reversible natural language watermarking method that combines arithmetic coding and synonym substitution operations.By analyzing relative frequencies of synonymous words,synonyms employed for carrying payload are quantized into an unbalanced and redundant binary sequence.The quantized binary sequence is compressed by adaptive binary arithmetic coding losslessly to provide a spare for accommodating additional data.Then,the compressed data appended with the watermark are embedded into the cover text via synonym substitutions in an invertible manner.On the receiver side,the watermark and compressed data can be extracted by decoding the values of synonyms in the watermarked text,as a result of which the original context can be perfectly recovered by decompressing the extracted compressed data and substituting the replaced synonyms with their original synonyms.Experimental results demonstrate that the proposed method can extract the watermark successfully and achieve a lossless recovery of the original text.Additionally,it achieves a high embedding capacity.展开更多
Let φ(n) denote the Euler-totient function, we study the distribution of solutions of φ(n) ≤ x in arithmetic progressions, where n ≡ l(mod q) and an asymptotic formula was obtained by Perron formula.
For any x ∈ (0, 1] (except at most countably many points), there exists a unique sequence {dn(x)}n≥1 of integers, called the digit sequence of x, such that x =∞ ∑j=1 1/d1(x)(d1(x)-1)……dj-1(x)(dj-1...For any x ∈ (0, 1] (except at most countably many points), there exists a unique sequence {dn(x)}n≥1 of integers, called the digit sequence of x, such that x =∞ ∑j=1 1/d1(x)(d1(x)-1)……dj-1(x)(dj-1(x)-1)dj(x). The dexter infinite series expansion is called the Liiroth expansion of x. This paper is con- cerned with the size of the set of points x whose digit sequence in its Liiroth expansion is strictly increasing and contains arbitrarily long arithmetic progressions with arbitrary com- mon difference. More precisely, we determine the Hausdorff dimension of the above set.展开更多
An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcti...An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.展开更多
A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality co...A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.展开更多
Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modul...Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively展开更多
From such actual conditions as the effects of characteristics of miltilayer petroleum geology and permeation fluid mechanics, a new numerical model is put forward and coupling splitting-up implicit interactive scheme ...From such actual conditions as the effects of characteristics of miltilayer petroleum geology and permeation fluid mechanics, a new numerical model is put forward and coupling splitting-up implicit interactive scheme is formed. For the actual situation of Dongying hollow (four-layer) and Tanhai region (three-layer) of Shengli Petroleum Field, the numerical simulation test results and the actual conditions are coincident.展开更多
The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governin...The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic. According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers. It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated.展开更多
基金supported by the Deanship of Scientific Research,at Imam Abdulrahman Bin Faisal University.Grant Number:2019-416-ASCS.
文摘Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data.
基金This article was supported by the general project“Research on Wind and Photovoltaic Fault Characteristics and Practical Short Circuit Calculation Model”(521820200097)of Jiangxi Electric Power Company.
文摘During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.
文摘High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classification per-formance.However,identifying the optimal features within high-dimensional datasets remains a computationally demanding task,necessitating the use of efficient algorithms.This paper introduces the Arithmetic Optimization Algorithm(AOA),a novel approach for finding the optimal feature subset.AOA is specifically modified to address feature selection problems based on a transfer function.Additionally,two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision,slow convergence,and susceptibility to local optima.The first enhancement proposes a new method for selecting solutions to be improved during the search process.This method effectively improves the original algorithm’s accuracy and convergence speed.The second enhancement introduces a local search with neighborhood strategies(AOA_NBH)during the AOA exploitation phase.AOA_NBH explores the vast search space,aiding the algorithm in escaping local optima.Our results demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement over state-of-the-art methods.
文摘This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.
文摘In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace.
文摘In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solving an equivalent functional equation. We obtain the necessary and sufficient conditions for the equality equation.
基金The National Key Technology R& D Program of Chinaduring the 11th Five-Year Plan Period (No.2006BAJ18B03).
文摘In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province of China (Grant No. 20082165)
文摘In this paper, we analyse a new chaos-based cryptosystem with an embedded adaptive arithmetic coder, which was proposed by Li Heng-Jian and Zhang J S (Li H J and Zhang J S 2010 Chin. Phys. B 19 050508). Although this new method has a better compression performance than its original version, it is found that there are some problems with its security and decryption processes. In this paper, it is shown how to obtain a great deal of plain text from the cipher text without prior knowledge of the secret key. After discussing the security and decryption problems of the Li Heng-Jian et al. algorithm, we propose an improved chaos-based cryptosystem with an embedded adaptive arithmetic coder that is more secure.
基金supported by the National Natural Science Foundation for Excellent Young Scholars(Grant 51222502)the National Natural Science Foundation of China(Grant 11172096)the Funds for State Key Laboratory of Construction Machinery(SKLCM2014-1)
文摘A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.
文摘A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged Navier-Stokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are transformed into the σ-coordinate system and the eddy viscosity is calculated with the standard k-ε turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit method for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a current over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.
文摘When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method (FEM). The two parameters, median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. ne solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.
基金This project is supported by National Natural Science Foundation of China(No.61202439)partly supported by Scientific Research Foundation of Hunan Provincial Education Department of China(No.16A008)partly supported by Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems(No.2017TP1016).
文摘For protecting the copyright of a text and recovering its original content harmlessly,this paper proposes a novel reversible natural language watermarking method that combines arithmetic coding and synonym substitution operations.By analyzing relative frequencies of synonymous words,synonyms employed for carrying payload are quantized into an unbalanced and redundant binary sequence.The quantized binary sequence is compressed by adaptive binary arithmetic coding losslessly to provide a spare for accommodating additional data.Then,the compressed data appended with the watermark are embedded into the cover text via synonym substitutions in an invertible manner.On the receiver side,the watermark and compressed data can be extracted by decoding the values of synonyms in the watermarked text,as a result of which the original context can be perfectly recovered by decompressing the extracted compressed data and substituting the replaced synonyms with their original synonyms.Experimental results demonstrate that the proposed method can extract the watermark successfully and achieve a lossless recovery of the original text.Additionally,it achieves a high embedding capacity.
基金Supported by the National Natural Science Foundation of China(11271249) Supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(1601213) Supported by the Scientific Research Program of Yangtze Normal University(2012XJYBO31)
文摘Let φ(n) denote the Euler-totient function, we study the distribution of solutions of φ(n) ≤ x in arithmetic progressions, where n ≡ l(mod q) and an asymptotic formula was obtained by Perron formula.
文摘For any x ∈ (0, 1] (except at most countably many points), there exists a unique sequence {dn(x)}n≥1 of integers, called the digit sequence of x, such that x =∞ ∑j=1 1/d1(x)(d1(x)-1)……dj-1(x)(dj-1(x)-1)dj(x). The dexter infinite series expansion is called the Liiroth expansion of x. This paper is con- cerned with the size of the set of points x whose digit sequence in its Liiroth expansion is strictly increasing and contains arbitrarily long arithmetic progressions with arbitrary com- mon difference. More precisely, we determine the Hausdorff dimension of the above set.
文摘An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.
基金Supported by the National Natural Science Foundation of China(20676117) the National Creative Research Groups Science Foundation of China(60421002)
文摘A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.
基金Supported by the National Natural Science Foun-dation of China (60373087)
文摘Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively
文摘From such actual conditions as the effects of characteristics of miltilayer petroleum geology and permeation fluid mechanics, a new numerical model is put forward and coupling splitting-up implicit interactive scheme is formed. For the actual situation of Dongying hollow (four-layer) and Tanhai region (three-layer) of Shengli Petroleum Field, the numerical simulation test results and the actual conditions are coincident.
基金Foundation items:the National Natural Science Foundation of China(59575040,59575032)the Areonautics Science Foundation of China(00B53010)
文摘The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic. According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers. It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated.