By modeling the Sun as an electrical dynamo, the speed and frequency of the Sun’s electromagnetic field is determined. The results confirm the approximate radius of the Sun’s inner core 1,220,000 meters and gravity ...By modeling the Sun as an electrical dynamo, the speed and frequency of the Sun’s electromagnetic field is determined. The results confirm the approximate radius of the Sun’s inner core 1,220,000 meters and gravity at its surface, 274 m/s2. The Sun’s rotating electromagnetic field radiates to Pluto and beyond. Like gravity, the near magnetic field of a sphere weakens with the inverse square of the distance. The Sun is a constant speed and constant acceleration machine. Like a set speed Ferris wheel, the orbital speed of planets is faster nearer to the Sun and reduces as the distance increases. The Standard Gravitation Parameter (m3/s2) is analogous to accelerating cubic volume (m3/s2) of the solar system. The planets are being pushed away by a centrifugal force from the constant acceleration of the Sun’s magnetic field, while at the same time being pulled in by the force of the Sun’s centripetal acceleration. Planetary orbits are the result of this balancing of forces. Gravity is a centripetal acceleration derived from a rotating electromagnetic field. Gravity is derived from an electromagnetic field which means it is not a force. There are only three forces in the universe: electromagnetic, strong nuclear and weak nuclear.展开更多
We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We o...We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We observed a development of quantized plateaus in Hall resistance (Rxy) at high pulsed fields up to 60 T. Due to the strong 2D confine- ment and layered properties of the samples, we interpreted the observation as bulk quantum Hall effect that is contributed by the parallel 2D conduction channels. Moreover, the spin degeneracy was lifted leading to Landau level splitting. The presence of anisotropic g factor and the formation of the oscillation beating pattern reveal a strong spin-orbit interaction in the SrMnSb2 system.展开更多
应用量子化学方法,分别在气相和水溶液中对氨基酸侧链与氧化鸟嘌呤碱基对(8-oxo-G∶C)形成的三体复合物的氢键键能、几何结构、电荷分布及二阶稳定化能进行了研究.结果表明,水溶液的存在削弱了复合物中的氢键强度,电荷分布变化明显,水...应用量子化学方法,分别在气相和水溶液中对氨基酸侧链与氧化鸟嘌呤碱基对(8-oxo-G∶C)形成的三体复合物的氢键键能、几何结构、电荷分布及二阶稳定化能进行了研究.结果表明,水溶液的存在削弱了复合物中的氢键强度,电荷分布变化明显,水溶液中形成氢键位点的电荷变化量约为气相中的10倍,而几何结构变化不明显、对于酶与DNA之间的相互作用的研究需在水溶液中进行.水溶液对带电三体复合物中8-oxo-G∶C与氨基酸侧链间的氢键有较大影响,键能平均减小了69.23 k J/mol,不带电复合物仅减小了3.60k J/mol.水溶液中三体复合物中8-oxo-G∶C间的氢键受侧链的影响不大,且与侧链带电与否无关,带电复合物和不带电复合物的氢键强度分别减小了24.57和30.05 k J/mol,且二阶稳定化能越大,其对应的氢键键长越短.展开更多
文摘By modeling the Sun as an electrical dynamo, the speed and frequency of the Sun’s electromagnetic field is determined. The results confirm the approximate radius of the Sun’s inner core 1,220,000 meters and gravity at its surface, 274 m/s2. The Sun’s rotating electromagnetic field radiates to Pluto and beyond. Like gravity, the near magnetic field of a sphere weakens with the inverse square of the distance. The Sun is a constant speed and constant acceleration machine. Like a set speed Ferris wheel, the orbital speed of planets is faster nearer to the Sun and reduces as the distance increases. The Standard Gravitation Parameter (m3/s2) is analogous to accelerating cubic volume (m3/s2) of the solar system. The planets are being pushed away by a centrifugal force from the constant acceleration of the Sun’s magnetic field, while at the same time being pulled in by the force of the Sun’s centripetal acceleration. Planetary orbits are the result of this balancing of forces. Gravity is a centripetal acceleration derived from a rotating electromagnetic field. Gravity is derived from an electromagnetic field which means it is not a force. There are only three forces in the universe: electromagnetic, strong nuclear and weak nuclear.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303302)the National Natural Science Foundation of China(Grant Nos.61322407,11474058,and 61674040)
文摘We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We observed a development of quantized plateaus in Hall resistance (Rxy) at high pulsed fields up to 60 T. Due to the strong 2D confine- ment and layered properties of the samples, we interpreted the observation as bulk quantum Hall effect that is contributed by the parallel 2D conduction channels. Moreover, the spin degeneracy was lifted leading to Landau level splitting. The presence of anisotropic g factor and the formation of the oscillation beating pattern reveal a strong spin-orbit interaction in the SrMnSb2 system.
文摘应用量子化学方法,分别在气相和水溶液中对氨基酸侧链与氧化鸟嘌呤碱基对(8-oxo-G∶C)形成的三体复合物的氢键键能、几何结构、电荷分布及二阶稳定化能进行了研究.结果表明,水溶液的存在削弱了复合物中的氢键强度,电荷分布变化明显,水溶液中形成氢键位点的电荷变化量约为气相中的10倍,而几何结构变化不明显、对于酶与DNA之间的相互作用的研究需在水溶液中进行.水溶液对带电三体复合物中8-oxo-G∶C与氨基酸侧链间的氢键有较大影响,键能平均减小了69.23 k J/mol,不带电复合物仅减小了3.60k J/mol.水溶液中三体复合物中8-oxo-G∶C间的氢键受侧链的影响不大,且与侧链带电与否无关,带电复合物和不带电复合物的氢键强度分别减小了24.57和30.05 k J/mol,且二阶稳定化能越大,其对应的氢键键长越短.