Objective To explore the association between the three polymorphisms [ C825T, C1429T and G(-350)A] of the gene encoding the G protein beta 3 subunit (GNB3) and hypertension by performing a case-control study in th...Objective To explore the association between the three polymorphisms [ C825T, C1429T and G(-350)A] of the gene encoding the G protein beta 3 subunit (GNB3) and hypertension by performing a case-control study in the northern Han Chinese population. Methods We recnaited 731 hypertensive patients and 673 control subjects (the calculated power value was 〉 0.8). Genotyping was performed to identify C825T, C1429T and G(-350)A polymorphisms using the TaqMan assay. Comparisons of allelic and genotypic frequencies between cases and controls were made by using the chi-square test. Logistic regression analyses were performed to investigate the relationships between the three polymorphisms of GNB3 gene under different genetic models (additive, dominant and recessive models). Results The genotype dis- tribution and allele frequencies of C825T, C1429T and G(-350)A polymorphisms did not differ significantly between hypertensive patients and control subjects, either when the full sample was assessed, or when the sample was stratified by gender. No significant association was observed between C825T, C 1429T and G(-350)A polymorphisms and the risk of essential hypertension in any genetic model. Linkage dis- equilibrium was only detected between C825T and C 1429T polymorphisms. Haplotype analyses observed that none of the three estimated haplotypes significantly increased the risk of hypertension. Conclusions Our study suggested that the GNB3 gene polymorphisms [C825T, C 1429T and G(-350)A] were not significantly associated with essential hypertension in northern Han Chinese population.展开更多
Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and...Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.展开更多
AIM To investigate whether GNB3 C825 T single nucleotide polymorphism(SNP) contributes to systolic blood pressure(SBP) ≥ 130 mmH g in a large-scale cross-sectional study among the Japanese population with diastolic b...AIM To investigate whether GNB3 C825 T single nucleotide polymorphism(SNP) contributes to systolic blood pressure(SBP) ≥ 130 mmH g in a large-scale cross-sectional study among the Japanese population with diastolic blood pressure(DBP) < 85 mmH g. METHODS We analyzed 11008 Japanese subjects, including 2797 cases(SBP ≥ 130 and DBP < 85 mmH g) who were not taking anti-hypertensive medication and 8211 controls(SBP < 130 and DBP < 85 mmH g), all of whom enrolled in the genome banking project of the 21 st Century COE(Center of Excellence) Program at Jichi Medical University. Subjects were divided into four groups according to gender(male and female) and age(≤ 49 years and ≥ 50 years). GNB3 gene polymorphism was determined using the TaqM an probe method. We compared the frequencies of alleles and genotypes between cases and controls by chi-squared test. The strength of the associations was estimated by odds ratios(ORs) and 95%CI by using logistic regression analysis. The ORs were adjusted for age and body mass index. RESULTS Allele and genotype distributions significantly differed between cases and controls only in males aged ≤ 49 years. Compared to the CC genotype, a significant OR was obtained in the TT genotype among males aged ≤ 49 years.CONCLUSION This study indicates that the TT genotype of the GNB3 C825 T SNP may contribute to SBP elevation of greater than 130 mmH g compared to the CC genotype in Japanese males aged ≤ 49 years.展开更多
AIM:To investigate the value of chaperonin containing TCP1,subunit 3(CCT3) to predict the prognosis of patients with hepatocellular carcinoma(HCC) and determine its function in HCC progression.METHODS:CCT3 expression ...AIM:To investigate the value of chaperonin containing TCP1,subunit 3(CCT3) to predict the prognosis of patients with hepatocellular carcinoma(HCC) and determine its function in HCC progression.METHODS:CCT3 expression levels were examined in human non-cancerous liver tissues and a variety of HCC cell lines by quantitative real-time PCR and immunoblotting.CCT3 expression was suppressed by small interfering RNA.The effects of reducing CCT3 expression in HCC cells were tested.The3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide(MTT) assay,cell counting experiment,cell cycle assay,apoptosis assay and invasion assay were employed to evaluate cell functions in vitro.Immunohistochemistry was performed on HCC specimens.In addition,CCT3 expression in HCC specimens was also assessed at the protein and mRNA level.Associations between clinicopathological characteristics and prognosis were analyzed,along with the possible mechanisms involved in CCT3's function in HCC progression.RESULTS:The expression levels of CCT3 mRNA and protein were upregulated in HCC cell lines in contrast to adjacent non-cancerous tissues.Reducing CCT3 expression not only suppressed cell proliferation in cell counts,MTT assay,cell cycle assay and induced cell apoptosis(P < 0.05 vs negative control),but also inhibited the tumor cell invasion capacity in vitro {P< 0.01 vs negative control).Overexpression of CCT3 in the nuclei of cancer cells in HCC specimens(58of 104 patients,55.8%) was associated with poor prognosis in HCC patients(3-year survival rate,55.5%vs 84.2%,P = 0.020) after hepatectomy.Mechanistic analyses showed that signal transducer and activator of transcription 3(STAT3) activation was decreased even when stimulated by interleukin-6 after knocking down CCT3 in the HepG2 cell line.CONCLUSION:Overexpression of CCT3 in the nuclei of cancerous cells is associated with HCC progression.CCT3 may be a target that affects the activation of STAT3 in HCC.展开更多
AIM:To investigate the expression pattern of gamma-aminobutyric acid A(GABAA) receptors in hepatocellular carcinoma(HCC) and indicate the relationship among gamma-aminobutyric acid(GABA),gamma-aminobutyric acid A rece...AIM:To investigate the expression pattern of gamma-aminobutyric acid A(GABAA) receptors in hepatocellular carcinoma(HCC) and indicate the relationship among gamma-aminobutyric acid(GABA),gamma-aminobutyric acid A receptor α3 subunit(GABRA3) and HCC.METHODS:HCC cell line Chang,HepG2,normal liver cell line L-02 and 8 samples of HCC tissues and paired non-cancerous tissues were analyzed with semiquantitative polymerase chain reaction(PCR) for the expression of GABAA receptors.HepG2 cells were treated with gamma-aminobutyric acid(GABA) at serial concentrations(0,1,10,20,40 and 60 μmol/L),and their proliferating abilities were analyzed with the 3-(4,5-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay,cell doubling time test,colon formation assay,cell cycle analysis and tumor planted in nude mice.Small interfering RNA was used for knocking down the endogenous GABRA3 in HepG2.Proliferating abilities of these cells treated with or without GABA were analyzed.RESULTS:We identified the overexpression of GABRA3 in HCC cells.Knockdown of endogenous GABRA3 expression in HepG2 attenuated HCC cell growth,suggesting its role in HCC cell viability.We determined the in vitro and in vivo effect of GABA in the proliferation of GABRA3-positive cell lines,and found that GABA increased HCC growth in a dose-dependent manner.Notably,the addition of GABA into the cell culture medium promoted the proliferation of GABRA3-expressing HepG2 cells,but not GABRA3-knockdown HepG2 cells.This means that GABA stimulates HepG2 cell growth through GABRA3.CONCLUSION:GABA and GABRA3 play important roles in HCC development and progression and can be a promising molecular target for the development of new diagnostic and therapeutic strategies for HCC.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic,nonspecific intestinal inflammatory disease with undefined pathogenesis.Non-SMC condensin I complex subunit D2(NCAPD2)and non-SMC condensin II complex subunit D3(NCAPD3)pl...BACKGROUND Ulcerative colitis(UC)is a chronic,nonspecific intestinal inflammatory disease with undefined pathogenesis.Non-SMC condensin I complex subunit D2(NCAPD2)and non-SMC condensin II complex subunit D3(NCAPD3)play pivotal roles in chromosome assembly and segregation during both mitosis and meiosis.To date,there has been no relevant report about the functional role of NCAPD2 and NCAPD3 in UC.AIM To determine the level of NCAPD2/3 in intestinal mucosa and explore the mechanisms of NCAPD2/3 in UC.METHODS Levels of NCAPD2/3 in intestinal tissue were detected in 30 UC patients and 30 healthy individuals with in situ hybridization(ISH).In vitro,NCM60 cells were divided into the NC group,model group,si-NCAPD2 group,si-NCAPD3 group and si-NCAPD2+si-NCAPD3 group.Inflammatory cytokines were measured by ELISA,IKK and NF-κB were evaluated by western blot,and IKK nucleation and NF-κB volume were analyzed by immunofluorescence assay.RESULTS Compared with expression in healthy individuals,NCAPD2 and NCAPD3 expression in intestinal tissue was significantly upregulated(P<0.001)in UC patients.Compared with levels in the model group,IL-1β,IL-6 and TNF-αin the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups were significantly downregulated(P<0.01).IKK and NF-κB protein expression in the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups was significantly decreased(P<0.01).Moreover,IKK nucleation and NF-κB volume were suppressed upon si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 transfection.CONCLUSION NCAPD2/3 is highly expressed in the intestinal mucosa of patients with active UC.Overexpression of NCAPD2/3 promotes the release of pro-inflammatory cytokines by modulating the IKK/NF-κB signaling pathway.展开更多
Vacuolar H^+-ATPase was regarded as a key enzyme promoting the fiber cell elongation in cotton (Gossypium hirsuturm L.) through regulating turgor-driven pressure involved in polarity expansion of single cell fiber. Th...Vacuolar H^+-ATPase was regarded as a key enzyme promoting the fiber cell elongation in cotton (Gossypium hirsuturm L.) through regulating turgor-driven pressure involved in polarity expansion of single cell fiber. The DET3, a V-ATPase subunit C, plays an important role in assembling subunits and regulating the enzyme activity, and is involved in Brassinosteroid-induced cell elongation. To analyze the function of GhDET3 on the elongation of cotton fibers, seven candidates of ESTs were screened and contigged for a 5'-upstream sequence, and the 3'-RACE technique was used to clone the 3'-downstream sequence for the full length of GhDET3 gene. The full length of the target clone was 1,340 bp, including a 10 bp 5'-UTR, an ORF of 1,134 bp, and a 196 bp 3'-UTR. This cDNA sequence encoded a polypepide of 377 amino acid residues with a predicted molecular mass of 43 kDa and a basic isoelectric point of 5.58. Furthermore, a length of 3,410 bp sequence from genomic DNA of GhDET3 was also cloned by PCR. The deduced amino acid sequence had a high homology with DET3 from Arabidopsis, rice, and maize. Quantitative real-time PCR (qRT-PCR) analysis showed that the GhDET3 expression pattern was ubiquitous in all the tissues and organs detected. The result also revealed that the accumulation of GhDET3 mRNA reached the highest profile at the fiber elongation stage in 12 DPA (days post anthesis) fibers, compared with the lowest level at the fiber initiation stage in 0 DPA ovules (with fibers). The transcript accumulation in fibers and ovules shared the similar variation tendency. In addition, in vitro ovule culture experiment demonstrated that exogenous 24-EBL treatment to 4 DPA ovules (with fibers) was capable of increasing the expression level of GhDET3, and the mRNA accumulation of GhDET3 increased in transgenic FBP7::GhDET2 cotton fibers in vivo. These results indicate that GhDET3 gene plays a crucial role in cotton fiber elongation.展开更多
AIM: To clarify the associations between G-protein beta polypeptide 3 (GNB3) C825T polymorphism and risk of the irritable bowel syndrome (IBS) by a meta-analysis.
BACKGROUND Single-nucleotide polymorphisms(SNPs)of the serotonin type 3 receptor subunit(HTR3)genes have been associated with psychosomatic symptoms,but it is not clear whether these associations exist in irritable bo...BACKGROUND Single-nucleotide polymorphisms(SNPs)of the serotonin type 3 receptor subunit(HTR3)genes have been associated with psychosomatic symptoms,but it is not clear whether these associations exist in irritable bowel syndrome(IBS).AIM To assess the association of HTR3 polymorphisms with depressive,anxiety,and somatization symptoms in individuals with IBS.METHODS In this retrospective study,623 participants with IBS were recruited from five specialty centers in Germany,Sweden,the United States,the United Kingdom,and Ireland.Depressive,anxiety,and somatization symptoms and sociodemographic characteristics were collected.Four functional SNPs—HTR3A c.-42C>T,HTR3B c.386A>C,HTR3C c.489C>A,and HTR3E c.*76G>A—were genotyped and analyzed using the dominant and recessive models.We also performed separate analyses for sex and IBS subtypes.SNP scores were calculated as the number of minor alleles of the SNPs above.The impact of HTR3C c.489C>A was tested by radioligand-binding and calcium influx assays.RESULTS Depressive and anxiety symptoms significantly worsened with increasing numbers of minor HTR3C c.489C>A alleles in the dominant model(F_(depressive)=7.475,P_(depressive)=0.006;F_(anxiety)=6.535,P_(anxiety)=0.011).A higher SNP score(range 0-6)was linked to a worsened depressive symptoms score(F=7.710,P-linear trend=0.006)in IBS.The potential relevance of the HTR3C SNP was corroborated,showing changes in the expression level of 5-HT3AC variant receptors.CONCLUSION We have provided the first evidence that HTR3C c.489C>A is involved in depressive and anxiety symptoms in individuals with IBS.The SNP score indicated that an increasing number of minor alleles is linked to the worsening of depressive symptoms in IBS.展开更多
The development of amyotrophic lateral sclerosis(ALS)may be related to the abnormal alterations of multiple proteins.Our previous study revealed that the expression of phosphoinositide-3-kinase regulatory subunit 4(PI...The development of amyotrophic lateral sclerosis(ALS)may be related to the abnormal alterations of multiple proteins.Our previous study revealed that the expression of phosphoinositide-3-kinase regulatory subunit 4(PIK3R4)was decreased in ALS.However,the role of PIK3R4 in ALS pathogenesis remains unknown.This study was the first to find that transfection of PC12 cells with small interfering RNA against the PIK3R4 gene significantly decreased the expression levels of PIK3R4 and the autophagy-related proteins p62 and LC3.Additionally,in vivo experiments revealed that the PIK3R4 protein was extensively expressed in the anterior horn,posterior horn,central canal,and areas surrounding the central canal in cervical,thoracic,and lumbar segments of the spinal cord in adult mice.PIK3R4 protein was mainly expressed in the neurons within the spinal lumbar segments.PIK3R4 and p62 expression levels were significantly decreased at both the pre-onset and onset stages of ALS disease in Tg(SOD1*G93A)1 Gur mice compared with control mice,but these proteins were markedly increased at the progression stage.LC3 protein expression did not change during progression of ALS.These findings suggest that PIK3R4 likely participates in the prevention of ALS progression.This study was approved by the Ethics Committee for Animal Care and Use of Jiangxi Provincial People’s Hospital,Affiliated People’s Hospital of Nanchang University(approval No.2020025)on March 26,2020.展开更多
The heterotrimeric GTP-binding proteins(G-proteins) in eukaryotes consisted of α, β and γ subunits and are important in molecular signaling by interacting with G-protein-coupled receptors(GPCR), on which to tra...The heterotrimeric GTP-binding proteins(G-proteins) in eukaryotes consisted of α, β and γ subunits and are important in molecular signaling by interacting with G-protein-coupled receptors(GPCR), on which to transduce signaling into the cytoplast through appropriate downstream effectors. However, downstream effectors regulated by the G-proteins in plants are currently not well defined. In this study, the transcripts of AGB1, a G protein β subunit gene in Arabidopsis were found to be down-regulated by cold and heat, but up-regulated by high salt stress treatment. AGB1 mutant(agb1-2) was more sensitive to high salt stress than wild-type(WT). Compared with WT, the cotyledon greening rates, fresh weight, root length, seedling germination rates and survival rates decreased more rapidly in agb1-2 along with increasing concentrations of Na Cl in normal(MS) medium. Physiological characteristic analysis showed that compared to WT, the contents of chlorophyll, relative proline accumulation and peroxidase(POD) were reduced, whereas the malonaldehyde(MDA) content and concentration ratio of Na+/K+ were increased in agb1-2 under salt stress condition. Further studies on the expression of several stress inducible genes associated with above physiological processes were investigated, and the results revealed that the expressions of genes related to proline biosynthesis, oxidative stress response, Na+ homeostasis, stress- and ABAresponses were lower in agb1-2 than in WT, suggesting that those genes are possible downstream genes of AGB1 and that their changed expression plays an important role in determining phenotypic and physiologic traits in agb1-2. Taken together, these findings indicate that AGB1 positively regulates salt tolerance in Arabidopsis through its modulation of genes transcription related to proline biosynthesis, oxidative stress, ion homeostasis, stress- and ABA-responses.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
Aim The expression of α3 subunit of nicotinic acetylcholine receptor (α3-nAChR) has been demonstra- ted in aorta, adipocyte and macrophage. The objective of the present study was to verify the regulatory roles of ...Aim The expression of α3 subunit of nicotinic acetylcholine receptor (α3-nAChR) has been demonstra- ted in aorta, adipocyte and macrophage. The objective of the present study was to verify the regulatory roles of α3- nAChR in the inflammatory responses of atherosclerosis. Methods The inflammatory indicators were detected in mouse macrophage, adipocytes and mouse aortic endothelial cells (MAECs) after the α3-nAChR was antagonized or after the α3-nAChR gene was silenced. Meanwhile, atherogenesis was induced in the apolipoprotein E knock-out ( ApoE^ -/- ) mice after fed with an atherogenic high-fat diet for 7 weeks. Results In MAECs, the lipopolysaccha- ride (LPS)-stimulated secretions of the adhesion molecules and inflammatory cytokines were significantly enhanced (30%± 80% ) after pretreatment with α-Conotoxin MII (an antagonist for α3-nAChR) or after knock-down with α3-nAChR gene. In adipocytes, the knock-down of α3 gene promoted the generations of the proin? ammatory adi- pokines or cytokines but decreased the production of adiponectin, an anti-inflammatory adipokine, by 29.29 ± 9.43%. In macrophage silenced with α3-nAChR gene, the M1 (classical) activation was predominantly stimula- ted, whereas the M2 (alternative) activation was suppressed. In addition, the amount of the atherosclerotic lesions and the infiltration of the M1 type activated macrophages into the arterial wall were markedly elevated in the α- Conotoxin MII-treated ApoE -/- mice. Conclusion The α3-nAChR may play a pivotal role in regulating the atherogenesis through influencing the inflammatory responses of ECs, macrophages and adipocytes. The mecha- nisms involve the regulations of multiple cell signaling pathways.展开更多
Autoantibody against neuronal nicotinic acetylcholine receptor (nAChR) α3 subunit is implicated in severe autonomic dysfunction in the patients with autoimmune autonomic ganglionopathy (AAG). Although this autoantibo...Autoantibody against neuronal nicotinic acetylcholine receptor (nAChR) α3 subunit is implicated in severe autonomic dysfunction in the patients with autoimmune autonomic ganglionopathy (AAG). Although this autoantibody has been revealed to impair fast excitatory synaptic transmission in autonomic ganglia, its precise mechanism remains unknown. Here, we show that antibody-induced reduction of cell-surface α3 subunits result in impairment of nicotine-evoked Ca2+ influx in stably transfected human embryonic kidney cells. These effects of the antibody were remarkably inhibited by interfering with the endocytic machinery at low-temperature. We conclude that reduction of nAChR in autonomic ganglia can be mediated by the endocytosis of α3 subunits, and resulted in autonomic failure in AAG patients.展开更多
基金grants of the National High Technology Research and Development Program,grants of the National Eleventh Five-year Plan Program from the Ministry of Science and Technology of China,Beijing Natural Science Foundation
文摘Objective To explore the association between the three polymorphisms [ C825T, C1429T and G(-350)A] of the gene encoding the G protein beta 3 subunit (GNB3) and hypertension by performing a case-control study in the northern Han Chinese population. Methods We recnaited 731 hypertensive patients and 673 control subjects (the calculated power value was 〉 0.8). Genotyping was performed to identify C825T, C1429T and G(-350)A polymorphisms using the TaqMan assay. Comparisons of allelic and genotypic frequencies between cases and controls were made by using the chi-square test. Logistic regression analyses were performed to investigate the relationships between the three polymorphisms of GNB3 gene under different genetic models (additive, dominant and recessive models). Results The genotype dis- tribution and allele frequencies of C825T, C1429T and G(-350)A polymorphisms did not differ significantly between hypertensive patients and control subjects, either when the full sample was assessed, or when the sample was stratified by gender. No significant association was observed between C825T, C 1429T and G(-350)A polymorphisms and the risk of essential hypertension in any genetic model. Linkage dis- equilibrium was only detected between C825T and C 1429T polymorphisms. Haplotype analyses observed that none of the three estimated haplotypes significantly increased the risk of hypertension. Conclusions Our study suggested that the GNB3 gene polymorphisms [C825T, C 1429T and G(-350)A] were not significantly associated with essential hypertension in northern Han Chinese population.
基金supported by grants from the National Natural Science Foundation of China(Nos.81960732 and 82060733)the Natural Science Foundation of Jiangxi Province(No.20224BAB206111)+2 种基金the Science and Technology Plan of Jiangxi Provincial Health Commission(No.202311141)the Open Project of Jiangxi Provincial Key Laboratory of Drug Design and Evaluation(No.JKLDE-KF-2101)the Open Project of Key Laboratory of Modern Preparation of TCM,Ministry of Education,Jiangxi University of Chinese Medicine(No.TCM-201911).
文摘Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.
基金Supported by The Jichi Medical University 21st Century Center of Excellence Program from Minister Education,Culture,Sports,Science and Technology in Japan
文摘AIM To investigate whether GNB3 C825 T single nucleotide polymorphism(SNP) contributes to systolic blood pressure(SBP) ≥ 130 mmH g in a large-scale cross-sectional study among the Japanese population with diastolic blood pressure(DBP) < 85 mmH g. METHODS We analyzed 11008 Japanese subjects, including 2797 cases(SBP ≥ 130 and DBP < 85 mmH g) who were not taking anti-hypertensive medication and 8211 controls(SBP < 130 and DBP < 85 mmH g), all of whom enrolled in the genome banking project of the 21 st Century COE(Center of Excellence) Program at Jichi Medical University. Subjects were divided into four groups according to gender(male and female) and age(≤ 49 years and ≥ 50 years). GNB3 gene polymorphism was determined using the TaqM an probe method. We compared the frequencies of alleles and genotypes between cases and controls by chi-squared test. The strength of the associations was estimated by odds ratios(ORs) and 95%CI by using logistic regression analysis. The ORs were adjusted for age and body mass index. RESULTS Allele and genotype distributions significantly differed between cases and controls only in males aged ≤ 49 years. Compared to the CC genotype, a significant OR was obtained in the TT genotype among males aged ≤ 49 years.CONCLUSION This study indicates that the TT genotype of the GNB3 C825 T SNP may contribute to SBP elevation of greater than 130 mmH g compared to the CC genotype in Japanese males aged ≤ 49 years.
基金Supported by Beijing Key Laboratory Special Fund,No.Z141107004414042
文摘AIM:To investigate the value of chaperonin containing TCP1,subunit 3(CCT3) to predict the prognosis of patients with hepatocellular carcinoma(HCC) and determine its function in HCC progression.METHODS:CCT3 expression levels were examined in human non-cancerous liver tissues and a variety of HCC cell lines by quantitative real-time PCR and immunoblotting.CCT3 expression was suppressed by small interfering RNA.The effects of reducing CCT3 expression in HCC cells were tested.The3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide(MTT) assay,cell counting experiment,cell cycle assay,apoptosis assay and invasion assay were employed to evaluate cell functions in vitro.Immunohistochemistry was performed on HCC specimens.In addition,CCT3 expression in HCC specimens was also assessed at the protein and mRNA level.Associations between clinicopathological characteristics and prognosis were analyzed,along with the possible mechanisms involved in CCT3's function in HCC progression.RESULTS:The expression levels of CCT3 mRNA and protein were upregulated in HCC cell lines in contrast to adjacent non-cancerous tissues.Reducing CCT3 expression not only suppressed cell proliferation in cell counts,MTT assay,cell cycle assay and induced cell apoptosis(P < 0.05 vs negative control),but also inhibited the tumor cell invasion capacity in vitro {P< 0.01 vs negative control).Overexpression of CCT3 in the nuclei of cancer cells in HCC specimens(58of 104 patients,55.8%) was associated with poor prognosis in HCC patients(3-year survival rate,55.5%vs 84.2%,P = 0.020) after hepatectomy.Mechanistic analyses showed that signal transducer and activator of transcription 3(STAT3) activation was decreased even when stimulated by interleukin-6 after knocking down CCT3 in the HepG2 cell line.CONCLUSION:Overexpression of CCT3 in the nuclei of cancerous cells is associated with HCC progression.CCT3 may be a target that affects the activation of STAT3 in HCC.
文摘AIM:To investigate the expression pattern of gamma-aminobutyric acid A(GABAA) receptors in hepatocellular carcinoma(HCC) and indicate the relationship among gamma-aminobutyric acid(GABA),gamma-aminobutyric acid A receptor α3 subunit(GABRA3) and HCC.METHODS:HCC cell line Chang,HepG2,normal liver cell line L-02 and 8 samples of HCC tissues and paired non-cancerous tissues were analyzed with semiquantitative polymerase chain reaction(PCR) for the expression of GABAA receptors.HepG2 cells were treated with gamma-aminobutyric acid(GABA) at serial concentrations(0,1,10,20,40 and 60 μmol/L),and their proliferating abilities were analyzed with the 3-(4,5-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay,cell doubling time test,colon formation assay,cell cycle analysis and tumor planted in nude mice.Small interfering RNA was used for knocking down the endogenous GABRA3 in HepG2.Proliferating abilities of these cells treated with or without GABA were analyzed.RESULTS:We identified the overexpression of GABRA3 in HCC cells.Knockdown of endogenous GABRA3 expression in HepG2 attenuated HCC cell growth,suggesting its role in HCC cell viability.We determined the in vitro and in vivo effect of GABA in the proliferation of GABRA3-positive cell lines,and found that GABA increased HCC growth in a dose-dependent manner.Notably,the addition of GABA into the cell culture medium promoted the proliferation of GABRA3-expressing HepG2 cells,but not GABRA3-knockdown HepG2 cells.This means that GABA stimulates HepG2 cell growth through GABRA3.CONCLUSION:GABA and GABRA3 play important roles in HCC development and progression and can be a promising molecular target for the development of new diagnostic and therapeutic strategies for HCC.
基金Supported by National Natural Science Foundation of China,No.81673973Natural Science Foundation of Jiangsu Province,China,No.BK20161577the Developing Program for Highlevel Academic Talent from Jiangsu Hospital of Chinese Medicine,No.y2018rc16
文摘BACKGROUND Ulcerative colitis(UC)is a chronic,nonspecific intestinal inflammatory disease with undefined pathogenesis.Non-SMC condensin I complex subunit D2(NCAPD2)and non-SMC condensin II complex subunit D3(NCAPD3)play pivotal roles in chromosome assembly and segregation during both mitosis and meiosis.To date,there has been no relevant report about the functional role of NCAPD2 and NCAPD3 in UC.AIM To determine the level of NCAPD2/3 in intestinal mucosa and explore the mechanisms of NCAPD2/3 in UC.METHODS Levels of NCAPD2/3 in intestinal tissue were detected in 30 UC patients and 30 healthy individuals with in situ hybridization(ISH).In vitro,NCM60 cells were divided into the NC group,model group,si-NCAPD2 group,si-NCAPD3 group and si-NCAPD2+si-NCAPD3 group.Inflammatory cytokines were measured by ELISA,IKK and NF-κB were evaluated by western blot,and IKK nucleation and NF-κB volume were analyzed by immunofluorescence assay.RESULTS Compared with expression in healthy individuals,NCAPD2 and NCAPD3 expression in intestinal tissue was significantly upregulated(P<0.001)in UC patients.Compared with levels in the model group,IL-1β,IL-6 and TNF-αin the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups were significantly downregulated(P<0.01).IKK and NF-κB protein expression in the si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 groups was significantly decreased(P<0.01).Moreover,IKK nucleation and NF-κB volume were suppressed upon si-NCAPD2,si-NCAPD3 and si-NCAPD2+si-NCAPD3 transfection.CONCLUSION NCAPD2/3 is highly expressed in the intestinal mucosa of patients with active UC.Overexpression of NCAPD2/3 promotes the release of pro-inflammatory cytokines by modulating the IKK/NF-κB signaling pathway.
基金the National Natural Science Foundation of China (No. 30370904 , 30671258) the National High Technology Research and Development Program (863 Project) of China (No. 2006AA10Z121) the Program for New Century Excellent Talents in University (No. NCET-07-0712).
文摘Vacuolar H^+-ATPase was regarded as a key enzyme promoting the fiber cell elongation in cotton (Gossypium hirsuturm L.) through regulating turgor-driven pressure involved in polarity expansion of single cell fiber. The DET3, a V-ATPase subunit C, plays an important role in assembling subunits and regulating the enzyme activity, and is involved in Brassinosteroid-induced cell elongation. To analyze the function of GhDET3 on the elongation of cotton fibers, seven candidates of ESTs were screened and contigged for a 5'-upstream sequence, and the 3'-RACE technique was used to clone the 3'-downstream sequence for the full length of GhDET3 gene. The full length of the target clone was 1,340 bp, including a 10 bp 5'-UTR, an ORF of 1,134 bp, and a 196 bp 3'-UTR. This cDNA sequence encoded a polypepide of 377 amino acid residues with a predicted molecular mass of 43 kDa and a basic isoelectric point of 5.58. Furthermore, a length of 3,410 bp sequence from genomic DNA of GhDET3 was also cloned by PCR. The deduced amino acid sequence had a high homology with DET3 from Arabidopsis, rice, and maize. Quantitative real-time PCR (qRT-PCR) analysis showed that the GhDET3 expression pattern was ubiquitous in all the tissues and organs detected. The result also revealed that the accumulation of GhDET3 mRNA reached the highest profile at the fiber elongation stage in 12 DPA (days post anthesis) fibers, compared with the lowest level at the fiber initiation stage in 0 DPA ovules (with fibers). The transcript accumulation in fibers and ovules shared the similar variation tendency. In addition, in vitro ovule culture experiment demonstrated that exogenous 24-EBL treatment to 4 DPA ovules (with fibers) was capable of increasing the expression level of GhDET3, and the mRNA accumulation of GhDET3 increased in transgenic FBP7::GhDET2 cotton fibers in vivo. These results indicate that GhDET3 gene plays a crucial role in cotton fiber elongation.
文摘AIM: To clarify the associations between G-protein beta polypeptide 3 (GNB3) C825T polymorphism and risk of the irritable bowel syndrome (IBS) by a meta-analysis.
基金results in part from collaboration and network activities promoted under the frame of the international network GENIEUR (Genes in Irritable Bowel Syndrome Research Network Europe),which has been funded by the COST program (BM1106, www.GENIEUR.eu)currently supported by the European Society of Neurogastroenterology and Motility (ESNM, www.ESNM.eu)
文摘BACKGROUND Single-nucleotide polymorphisms(SNPs)of the serotonin type 3 receptor subunit(HTR3)genes have been associated with psychosomatic symptoms,but it is not clear whether these associations exist in irritable bowel syndrome(IBS).AIM To assess the association of HTR3 polymorphisms with depressive,anxiety,and somatization symptoms in individuals with IBS.METHODS In this retrospective study,623 participants with IBS were recruited from five specialty centers in Germany,Sweden,the United States,the United Kingdom,and Ireland.Depressive,anxiety,and somatization symptoms and sociodemographic characteristics were collected.Four functional SNPs—HTR3A c.-42C>T,HTR3B c.386A>C,HTR3C c.489C>A,and HTR3E c.*76G>A—were genotyped and analyzed using the dominant and recessive models.We also performed separate analyses for sex and IBS subtypes.SNP scores were calculated as the number of minor alleles of the SNPs above.The impact of HTR3C c.489C>A was tested by radioligand-binding and calcium influx assays.RESULTS Depressive and anxiety symptoms significantly worsened with increasing numbers of minor HTR3C c.489C>A alleles in the dominant model(F_(depressive)=7.475,P_(depressive)=0.006;F_(anxiety)=6.535,P_(anxiety)=0.011).A higher SNP score(range 0-6)was linked to a worsened depressive symptoms score(F=7.710,P-linear trend=0.006)in IBS.The potential relevance of the HTR3C SNP was corroborated,showing changes in the expression level of 5-HT3AC variant receptors.CONCLUSION We have provided the first evidence that HTR3C c.489C>A is involved in depressive and anxiety symptoms in individuals with IBS.The SNP score indicated that an increasing number of minor alleles is linked to the worsening of depressive symptoms in IBS.
基金supported by the National Natural Science Foundation of China(Nos.30560042,81160161 and 81360198)Education Department of Jiangxi Province(No.GJJ170021)+1 种基金Jiangxi Provincial Department of Science and Technology(Nos.[2014]-47,20142BBG70062,20171BAB215022,20192BAB205043)Health Commission of Jiangxi Province(No.20181019)(all to RSX)。
文摘The development of amyotrophic lateral sclerosis(ALS)may be related to the abnormal alterations of multiple proteins.Our previous study revealed that the expression of phosphoinositide-3-kinase regulatory subunit 4(PIK3R4)was decreased in ALS.However,the role of PIK3R4 in ALS pathogenesis remains unknown.This study was the first to find that transfection of PC12 cells with small interfering RNA against the PIK3R4 gene significantly decreased the expression levels of PIK3R4 and the autophagy-related proteins p62 and LC3.Additionally,in vivo experiments revealed that the PIK3R4 protein was extensively expressed in the anterior horn,posterior horn,central canal,and areas surrounding the central canal in cervical,thoracic,and lumbar segments of the spinal cord in adult mice.PIK3R4 protein was mainly expressed in the neurons within the spinal lumbar segments.PIK3R4 and p62 expression levels were significantly decreased at both the pre-onset and onset stages of ALS disease in Tg(SOD1*G93A)1 Gur mice compared with control mice,but these proteins were markedly increased at the progression stage.LC3 protein expression did not change during progression of ALS.These findings suggest that PIK3R4 likely participates in the prevention of ALS progression.This study was approved by the Ethics Committee for Animal Care and Use of Jiangxi Provincial People’s Hospital,Affiliated People’s Hospital of Nanchang University(approval No.2020025)on March 26,2020.
基金funded in part by the National Key Project for Research on Transgenic Biology(2013ZX08002-002)the National Natural Science Foundation of China (31201200)
文摘The heterotrimeric GTP-binding proteins(G-proteins) in eukaryotes consisted of α, β and γ subunits and are important in molecular signaling by interacting with G-protein-coupled receptors(GPCR), on which to transduce signaling into the cytoplast through appropriate downstream effectors. However, downstream effectors regulated by the G-proteins in plants are currently not well defined. In this study, the transcripts of AGB1, a G protein β subunit gene in Arabidopsis were found to be down-regulated by cold and heat, but up-regulated by high salt stress treatment. AGB1 mutant(agb1-2) was more sensitive to high salt stress than wild-type(WT). Compared with WT, the cotyledon greening rates, fresh weight, root length, seedling germination rates and survival rates decreased more rapidly in agb1-2 along with increasing concentrations of Na Cl in normal(MS) medium. Physiological characteristic analysis showed that compared to WT, the contents of chlorophyll, relative proline accumulation and peroxidase(POD) were reduced, whereas the malonaldehyde(MDA) content and concentration ratio of Na+/K+ were increased in agb1-2 under salt stress condition. Further studies on the expression of several stress inducible genes associated with above physiological processes were investigated, and the results revealed that the expressions of genes related to proline biosynthesis, oxidative stress response, Na+ homeostasis, stress- and ABAresponses were lower in agb1-2 than in WT, suggesting that those genes are possible downstream genes of AGB1 and that their changed expression plays an important role in determining phenotypic and physiologic traits in agb1-2. Taken together, these findings indicate that AGB1 positively regulates salt tolerance in Arabidopsis through its modulation of genes transcription related to proline biosynthesis, oxidative stress, ion homeostasis, stress- and ABA-responses.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
文摘Aim The expression of α3 subunit of nicotinic acetylcholine receptor (α3-nAChR) has been demonstra- ted in aorta, adipocyte and macrophage. The objective of the present study was to verify the regulatory roles of α3- nAChR in the inflammatory responses of atherosclerosis. Methods The inflammatory indicators were detected in mouse macrophage, adipocytes and mouse aortic endothelial cells (MAECs) after the α3-nAChR was antagonized or after the α3-nAChR gene was silenced. Meanwhile, atherogenesis was induced in the apolipoprotein E knock-out ( ApoE^ -/- ) mice after fed with an atherogenic high-fat diet for 7 weeks. Results In MAECs, the lipopolysaccha- ride (LPS)-stimulated secretions of the adhesion molecules and inflammatory cytokines were significantly enhanced (30%± 80% ) after pretreatment with α-Conotoxin MII (an antagonist for α3-nAChR) or after knock-down with α3-nAChR gene. In adipocytes, the knock-down of α3 gene promoted the generations of the proin? ammatory adi- pokines or cytokines but decreased the production of adiponectin, an anti-inflammatory adipokine, by 29.29 ± 9.43%. In macrophage silenced with α3-nAChR gene, the M1 (classical) activation was predominantly stimula- ted, whereas the M2 (alternative) activation was suppressed. In addition, the amount of the atherosclerotic lesions and the infiltration of the M1 type activated macrophages into the arterial wall were markedly elevated in the α- Conotoxin MII-treated ApoE -/- mice. Conclusion The α3-nAChR may play a pivotal role in regulating the atherogenesis through influencing the inflammatory responses of ECs, macrophages and adipocytes. The mecha- nisms involve the regulations of multiple cell signaling pathways.
文摘Autoantibody against neuronal nicotinic acetylcholine receptor (nAChR) α3 subunit is implicated in severe autonomic dysfunction in the patients with autoimmune autonomic ganglionopathy (AAG). Although this autoantibody has been revealed to impair fast excitatory synaptic transmission in autonomic ganglia, its precise mechanism remains unknown. Here, we show that antibody-induced reduction of cell-surface α3 subunits result in impairment of nicotine-evoked Ca2+ influx in stably transfected human embryonic kidney cells. These effects of the antibody were remarkably inhibited by interfering with the endocytic machinery at low-temperature. We conclude that reduction of nAChR in autonomic ganglia can be mediated by the endocytosis of α3 subunits, and resulted in autonomic failure in AAG patients.