期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Activation of G-protein-coupled receptor 39 reduces neuropathic pain in a rat model
1
作者 Longqing Zhang Xi Tan +7 位作者 Fanhe Song Danyang Li Jiayi Wu Shaojie Gao Jia Sun Daiqiang Liu Yaqun Zhou Wei Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期687-696,共10页
Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR3... Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury. 展开更多
关键词 g-protein-coupled receptor 39(GPR39) NEUROINFLAMMATION neuropathic pain nuclear respiratory factor 1(NRF1) peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α) sirtuin 1(SIRT1) spinal cord mitochondrial transcription factor A(TFAM)
下载PDF
Cadmium-induced neurotoxicity: still much ado 被引量:11
2
作者 Jacopo Junio Valerio Branca Gabriele Morucci Alessandra Pacini 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期1879-1882,共4页
Cadmium(Cd) is a highly toxic heavy metal that accumulates in living system and as such is currently one of the most important occupational and environmental pollutants. Cd reaches into the environment by anthropoge... Cadmium(Cd) is a highly toxic heavy metal that accumulates in living system and as such is currently one of the most important occupational and environmental pollutants. Cd reaches into the environment by anthropogenic mobilization and it is absorbed from tobacco consumption or ingestion of contaminated substances. Its extremely long biological half-life(approximately 20-30 years in humans) and low rate of excretion from the body cause cadmium storage predominantly in soft tissues(primarily, liver and kidneys) with a diversity of toxic effects such as nephrotoxicity, hepatotoxicity, endocrine and reproductive toxicities. Moreover, a Cd-dependent neurotoxicity has been also related to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and multiple sclerosis. At the cellular level, Cd affects cell proliferation, differentiation, apoptosis and other cellular activities. Among all these mechanisms, the Cd-dependent interference in DNA repair mechanisms as well as the generation of reactive oxygen species, seem to be the most important causes of its cellular toxicity. Nevertheless, there is still much to find out about its mechanisms of action and ways to reduce health risks. This article gives a brief review of the relevant mechanisms that it would be worth investigating in order to deep inside cadmium toxicity. 展开更多
关键词 CADMIUM toxicity neurodegenerative disorders oxidative stress reactive oxygen species blood-brain barrier permeability METALLOTHIONEIN 17Β-ESTRADIOL g-protein-coupled estrogen receptor-30
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部