This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
This paper illustrates a simple kind of tri-band printed G-shaped monopole antenna for Multiple-Input-Multiple-Output (MIMO) systems. The proposed antenna is used to achieve three operating frequencies, 2.45 GHz, 5.2 ...This paper illustrates a simple kind of tri-band printed G-shaped monopole antenna for Multiple-Input-Multiple-Output (MIMO) systems. The proposed antenna is used to achieve three operating frequencies, 2.45 GHz, 5.2 GHz and 8.2 GHz for wireless communications. To improve the isolation between the two radiating elements, we use left-handed materials composed of only S-shaped resonators to get negative refractive index at the three operating frequencies. When one layer of S-shaped resonators is employed, the antenna correlation, the diversity gain and the bandwidth are also enhanced. The simulated results are presented and evaluated with and without left-handed materials.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
文摘This paper illustrates a simple kind of tri-band printed G-shaped monopole antenna for Multiple-Input-Multiple-Output (MIMO) systems. The proposed antenna is used to achieve three operating frequencies, 2.45 GHz, 5.2 GHz and 8.2 GHz for wireless communications. To improve the isolation between the two radiating elements, we use left-handed materials composed of only S-shaped resonators to get negative refractive index at the three operating frequencies. When one layer of S-shaped resonators is employed, the antenna correlation, the diversity gain and the bandwidth are also enhanced. The simulated results are presented and evaluated with and without left-handed materials.