[Objectives]To evaluate the quality of Cardamine macrophylla Willd as Tibetan and Qiang medicinal materials,so as to improve its quality standard and evaluate the quality of C.macrophylla Willd in western Sichuan Prov...[Objectives]To evaluate the quality of Cardamine macrophylla Willd as Tibetan and Qiang medicinal materials,so as to improve its quality standard and evaluate the quality of C.macrophylla Willd in western Sichuan Province.[Methods]C.macrophylla Willd produced from western Sichuan Province was used as the sample,and the contents of moisture,total ash,acid-insoluble ash,extract,total flavonoids and quercetin in the ground part of C.macrophylla Willd were determined in accordance with the methods of Chinese Pharmacopoeia(2020 edition).With the above seven indicators as evaluation indicators,the quality of medicinal materials was comprehensively evaluated by cluster analysis and principal component analysis(PCA).[Results]According to the results of each indicator,the moisture content of C.macrophylla Willd sample should not exceed 11.00%,the total ash content should not exceed 18%,the acid-insoluble ash content should not exceed 6%,the extract content should not be less than 19%,the total flavone content(calculated by quercetin)should not be less than 2%,and the quercetin content should not be less than 0.15%.[Conclusions]The sample S7 has the best quality and S6 has the worst quality.In this study,the quantitative analysis method of total flavonoids(quercetin)and quercetin in C.macrophylla Willd was established,and the limits of each indicator were preliminarily formulated.展开更多
Gentiana macrophylla Pall.(G.macrophylla),whose genus and family belong to the Gentianaceae and Gentiana.The main distribution centers of G.macrophylla resources were the Loess Plateau and the eastern Qinghai-Tibet Pl...Gentiana macrophylla Pall.(G.macrophylla),whose genus and family belong to the Gentianaceae and Gentiana.The main distribution centers of G.macrophylla resources were the Loess Plateau and the eastern Qinghai-Tibet Plateau in China.G.macrophylla,as a traditional medicine,has a long history and was used in different ethnic medicines.Its roots were used in traditional Chinese medicine,which had the effect of anti-inflammatory,anti-rheumatism,antiviral,promote blood circulation,eliminate swelling and pain,while its flowers were used in traditional Mongolian medicine,which had the effect of removing“Xieriwusu”(“Xieriwusu”means rheumatism),antiviral,reducing swelling.From previous studies,it could be found that there were more than forty components isolated and identified from G.macrophylla.The main chemical components were iridoids,flavonoids,triterpenoids,steroids,phenylpropanoids,and alkaloids.Iridoid terpenoid components represented by gentiopicroside and Loganic acid were the main components of the root of G.macrophylla,which had anti-inflammatory,antioxidant,hepatoprotective,analgesic,antibacterial and promote gastrointestinal tract activities.The flower mainly contains isoorientin and isovitexin as the representative of flavonoids.They have anti-tumor,liver protection,heart protection,inhibition of acetylcholinesterase and inhibition of melanin.It could be seen from previous studies that the research on G.macrophylla was mainly focused on the root,and the flower was rarely studied.It was reported that the experimental data of the anti-inflammatory and anti-tumor effects of G.macrophylla flowers show that its curative effect was very good.Therefore,the flowers of the flower of G.macrophylla can be used as potential medicinal parts for research.Given that flavonoids are mostly found in flowers and exhibit a range of functions,it is possible to investigate the flowers in order to learn more about G.macrophylla’s potential medical benefits.Based on botanical books,Chinese classic texts,medical monographs and academic search engines(Google,Google Scholar,Web of Science,SciFinder,Pubmed,CNKI,Sci-hub,Elsevier and Wanfang),the data and information on G.macrophylla in the past 20 years are inquired and summarized comprehensively.The basic source,traditional use,chemical composition,biological activity,pharmacodynamics and quality control of G.macrophylla was systematically reviewed,in order to provide reliable basis for the subsequent development and utilization of G.macrophylla.展开更多
[Objectives]To study the original plants,characters,tissue structure,powder characteristics and thin-layer chromatography(TLC)characteristics of Cardamine tangutorum and Cardamine macrophylla as Tibetan and Qiang edib...[Objectives]To study the original plants,characters,tissue structure,powder characteristics and thin-layer chromatography(TLC)characteristics of Cardamine tangutorum and Cardamine macrophylla as Tibetan and Qiang edible and medicinal herbs,and to provide the basis for the identification of C.tangutorum and C.macrophylla.[Methods]The identification of C.macrophyll and C.tangutorum was carried out by original plant identification,character identification,microscopic identification and TLC identification.[Results]C.tangutorum and C.macrophylla can be distinguished according to the shape of rhizome and stem,the difference of stem leaves and leaflets,and the difference of flower color;there is no obvious difference between the characteristics of the shape and the powder;the thin layer chromatography shows that in the thin layer chromatography of C.tangutorum and C.macrophylla,spots with the same color are shown on the corresponding positions of the ground part and the reference substance quercetin;the underground part and the position corresponding to the reference substanceβ-sitosterol all show the same color spots.[Conclusions]This study provides a reference for the identification of C.tangutorum and C.macrophylla.展开更多
The present study assessed the proximate composition,in vitro antioxidant activity and GC-MS analyses of fermented Pentaclethra macrophylla seeds extract(FPMSE).The in vitro antioxidant activity was assessed using 2,2...The present study assessed the proximate composition,in vitro antioxidant activity and GC-MS analyses of fermented Pentaclethra macrophylla seeds extract(FPMSE).The in vitro antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazl(DPPH)while Gas Chromatography-Mass Spectrophotometry(GC-MS)technique was used to identify the volatile compounds in FPMSE.FPMSE revealed a dose dependent percentage inhibition of the extract on DPPH assay.Proximate composition of FPMSE constitutes respectively;ash(0.33±0.12%),protein(2.19±0.08%),fats and oil(80.60±0.00%),carbohydrate(16.88±0.00%)while moisture and fibre were not detected.However,the pulverised sample constitute respectively;ash(1.27±0.58%),protein(10.51±0.60%),moisture(8.27±0.12%),fats and oil(32.33±0.12%),fibre(7.27±0.12%)and carbohydrate(40.35±0.00%).GC-MS analyses revealed fourteen(14)fatty acids including Octadecanoic acid(1.95%),Benzyloxymethylimine(43.89%),2-Allylpent-4-enoic acid benzyl ester(26.25%),Hexadecanoic acid,methyl ester(1.09%),Oleic Acid(0.25%),9,12-Octadecadienoic acid,methyl ester(Omega-6-fatty acid)(1.52%).The bioactive compounds identified in FPMSE could contribute to the pharmacological properties of P.macrophylla seeds and hence,could be of considerable interest for the development of new drugs.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which mi...Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.展开更多
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
基金Supported by Scientific Research Project for School-level Teachers of Sichuan College of Traditional Chinese Medicine in 2023 (23ZRYB08)Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory Open Fund Project of Southwest Minzu University (QTPEM2305).
文摘[Objectives]To evaluate the quality of Cardamine macrophylla Willd as Tibetan and Qiang medicinal materials,so as to improve its quality standard and evaluate the quality of C.macrophylla Willd in western Sichuan Province.[Methods]C.macrophylla Willd produced from western Sichuan Province was used as the sample,and the contents of moisture,total ash,acid-insoluble ash,extract,total flavonoids and quercetin in the ground part of C.macrophylla Willd were determined in accordance with the methods of Chinese Pharmacopoeia(2020 edition).With the above seven indicators as evaluation indicators,the quality of medicinal materials was comprehensively evaluated by cluster analysis and principal component analysis(PCA).[Results]According to the results of each indicator,the moisture content of C.macrophylla Willd sample should not exceed 11.00%,the total ash content should not exceed 18%,the acid-insoluble ash content should not exceed 6%,the extract content should not be less than 19%,the total flavone content(calculated by quercetin)should not be less than 2%,and the quercetin content should not be less than 0.15%.[Conclusions]The sample S7 has the best quality and S6 has the worst quality.In this study,the quantitative analysis method of total flavonoids(quercetin)and quercetin in C.macrophylla Willd was established,and the limits of each indicator were preliminarily formulated.
基金supported by the project for Inner Mongolia Autonomous Region Mongolian medicine standardization(2023-[MB026])the Scientific and Technological Innovative Research Team for Inner Mongolia Medical University of Bioanalysis of Mongolian medicine’s(No.YKD2022TD037)+1 种基金the University Youth Science and Technology Talent Program(No.NJYT23135)the Inner Mongolia Medical University“First-class Discipline”construction project(No.2024MYYLXK006).
文摘Gentiana macrophylla Pall.(G.macrophylla),whose genus and family belong to the Gentianaceae and Gentiana.The main distribution centers of G.macrophylla resources were the Loess Plateau and the eastern Qinghai-Tibet Plateau in China.G.macrophylla,as a traditional medicine,has a long history and was used in different ethnic medicines.Its roots were used in traditional Chinese medicine,which had the effect of anti-inflammatory,anti-rheumatism,antiviral,promote blood circulation,eliminate swelling and pain,while its flowers were used in traditional Mongolian medicine,which had the effect of removing“Xieriwusu”(“Xieriwusu”means rheumatism),antiviral,reducing swelling.From previous studies,it could be found that there were more than forty components isolated and identified from G.macrophylla.The main chemical components were iridoids,flavonoids,triterpenoids,steroids,phenylpropanoids,and alkaloids.Iridoid terpenoid components represented by gentiopicroside and Loganic acid were the main components of the root of G.macrophylla,which had anti-inflammatory,antioxidant,hepatoprotective,analgesic,antibacterial and promote gastrointestinal tract activities.The flower mainly contains isoorientin and isovitexin as the representative of flavonoids.They have anti-tumor,liver protection,heart protection,inhibition of acetylcholinesterase and inhibition of melanin.It could be seen from previous studies that the research on G.macrophylla was mainly focused on the root,and the flower was rarely studied.It was reported that the experimental data of the anti-inflammatory and anti-tumor effects of G.macrophylla flowers show that its curative effect was very good.Therefore,the flowers of the flower of G.macrophylla can be used as potential medicinal parts for research.Given that flavonoids are mostly found in flowers and exhibit a range of functions,it is possible to investigate the flowers in order to learn more about G.macrophylla’s potential medical benefits.Based on botanical books,Chinese classic texts,medical monographs and academic search engines(Google,Google Scholar,Web of Science,SciFinder,Pubmed,CNKI,Sci-hub,Elsevier and Wanfang),the data and information on G.macrophylla in the past 20 years are inquired and summarized comprehensively.The basic source,traditional use,chemical composition,biological activity,pharmacodynamics and quality control of G.macrophylla was systematically reviewed,in order to provide reliable basis for the subsequent development and utilization of G.macrophylla.
基金Scientific Research Project for School-level Teachers of Sichuan College of Traditional Chinese Medicine in 2023(23ZRYB08)Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory Open Fund Project of Southwest Minzu University(QTPEM2305).
文摘[Objectives]To study the original plants,characters,tissue structure,powder characteristics and thin-layer chromatography(TLC)characteristics of Cardamine tangutorum and Cardamine macrophylla as Tibetan and Qiang edible and medicinal herbs,and to provide the basis for the identification of C.tangutorum and C.macrophylla.[Methods]The identification of C.macrophyll and C.tangutorum was carried out by original plant identification,character identification,microscopic identification and TLC identification.[Results]C.tangutorum and C.macrophylla can be distinguished according to the shape of rhizome and stem,the difference of stem leaves and leaflets,and the difference of flower color;there is no obvious difference between the characteristics of the shape and the powder;the thin layer chromatography shows that in the thin layer chromatography of C.tangutorum and C.macrophylla,spots with the same color are shown on the corresponding positions of the ground part and the reference substance quercetin;the underground part and the position corresponding to the reference substanceβ-sitosterol all show the same color spots.[Conclusions]This study provides a reference for the identification of C.tangutorum and C.macrophylla.
文摘The present study assessed the proximate composition,in vitro antioxidant activity and GC-MS analyses of fermented Pentaclethra macrophylla seeds extract(FPMSE).The in vitro antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazl(DPPH)while Gas Chromatography-Mass Spectrophotometry(GC-MS)technique was used to identify the volatile compounds in FPMSE.FPMSE revealed a dose dependent percentage inhibition of the extract on DPPH assay.Proximate composition of FPMSE constitutes respectively;ash(0.33±0.12%),protein(2.19±0.08%),fats and oil(80.60±0.00%),carbohydrate(16.88±0.00%)while moisture and fibre were not detected.However,the pulverised sample constitute respectively;ash(1.27±0.58%),protein(10.51±0.60%),moisture(8.27±0.12%),fats and oil(32.33±0.12%),fibre(7.27±0.12%)and carbohydrate(40.35±0.00%).GC-MS analyses revealed fourteen(14)fatty acids including Octadecanoic acid(1.95%),Benzyloxymethylimine(43.89%),2-Allylpent-4-enoic acid benzyl ester(26.25%),Hexadecanoic acid,methyl ester(1.09%),Oleic Acid(0.25%),9,12-Octadecadienoic acid,methyl ester(Omega-6-fatty acid)(1.52%).The bioactive compounds identified in FPMSE could contribute to the pharmacological properties of P.macrophylla seeds and hence,could be of considerable interest for the development of new drugs.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
基金supported by grants from the National Key Research and Development Program of China,No.2017YFA0105400(to LR)the Key Research and Development Program of Guangdong Province,No.2019B020236002(to LR)the National Natural Science Foundation of China,Nos.81972111(to LZ),81772349(to BL).
文摘Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.