Planktonic foraminifer Globigerinoides ruber(white)and Trilobatus sacculifer are the most frequently used mixedlayer dwelling species for reconstructing past oceanic environments.Specifically,the Mg/Ca ratios of these...Planktonic foraminifer Globigerinoides ruber(white)and Trilobatus sacculifer are the most frequently used mixedlayer dwelling species for reconstructing past oceanic environments.Specifically,the Mg/Ca ratios of these two foraminiferal species have been used for reconstructing tropical/subtropical changes in sea surface temperature(SST).However,these two species have different morphotypes,of which the spatial and temporal differences in Mg/Ca ratios and their influencing factors are still unclear.Our objective is to investigate the potential differences between the Mg/Ca ratios of these different morphotypes of G.ruber(white)and T.sacculifer in the western Philippine Sea(WPS)and determine their implications for the reconstruction of SST and upper-ocean structure.Mg/Ca measurements are made on two basic morphotypes of G.ruber(white)[sensu stricto(s.s.)and sensu lato(s.l.)]and T.sacculifer[with(w)and without(w/o)a sac-like final chamber]on samples of Site MD06-3047B from the WPS.Our results reveal that Mg/Ca ratios of different G.ruber morphotypes show consistent differences;and those of T.sacculifer morphotypes show staged variations since MIS 3.It is suggested to select a single morphotype for reconstructing SST changes using the Mg/Ca ratios of G.ruber and T.sacculifer in the WPS.Furthermore,the Mg/Ca ratios between G.ruber s.s.and G.ruber s.l.[Δ(Mg/Ca)_(G.ruber s.s.-s.l.)]downcore MD06-3047B covaries with indexes of summer monsoon.Combining with the core-top results,showing regional variation of differences in theΔ(Mg/Ca)_(G.ruber s.s.-s.l.)over the western tropical Pacific,we propose thatΔ(Mg/Ca)_(G.ruber s.s.-s.l.)may tend to reflect summer mixed layer depth.展开更多
G.rigens L.as a new quality ground cover plant can be applied in parks,yards,roadsides and tree pools,and contributes to the beauty of urban landscapes.This paper introduces biological characters and adaptability of‘...G.rigens L.as a new quality ground cover plant can be applied in parks,yards,roadsides and tree pools,and contributes to the beauty of urban landscapes.This paper introduces biological characters and adaptability of‘Mini Star White’,a new variety of G.rigens L.introduced from Japan,and studied the color improvement of the variety on the basis of applying it in various landscape forms,which enriches ground cover diversity of Suzhou area,and provides new materials for the hybridization of G.rigens L..展开更多
Asteroseismology is a powerful tool used for detecting the inner structure of stars, which is also widely used to study white dwarfs. We discuss the asteroseismology of DAV stars. The period-to-period fitting method i...Asteroseismology is a powerful tool used for detecting the inner structure of stars, which is also widely used to study white dwarfs. We discuss the asteroseismology of DAV stars. The period-to-period fitting method is discussed in detail, including its reliability in detecting the inner structure of DAV stars. If we assume that all observed modes of some DAV stars are the l = I cases, the errors associated with model fitting will be always large. If we assume that the observed modes are com- posed of I = 1 and 2 modes, the errors associated with model fitting in this case will be small. However, there will be modes identified as l = 2 that do not have ob- served quintuplets. G29-38 has been observed spectroscopically and photometrically for many years. Thompson et al. made 1 modes identifications in the star through the limb darkening effect. With 11 known I modes, we also study the asteroseismology of G29-38, which reduces the blind l fittings and is a fair choice. Unfortunately, our two best-fitting models are not in line with the previous atmospheric results. Based on factors like only a few observed modes, stability and identification of eigenmodes, identification of spherical degrees, construction of physical and realistic models and so on, detecting the inner structure of DAV stars by asteroseismology needs further development.展开更多
基金The National Natural Science Foundation of China under contract Nos 41830539 and 41906063the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2022QNLM050203the Taishan Scholars Project Funding under contract No.ts20190963。
文摘Planktonic foraminifer Globigerinoides ruber(white)and Trilobatus sacculifer are the most frequently used mixedlayer dwelling species for reconstructing past oceanic environments.Specifically,the Mg/Ca ratios of these two foraminiferal species have been used for reconstructing tropical/subtropical changes in sea surface temperature(SST).However,these two species have different morphotypes,of which the spatial and temporal differences in Mg/Ca ratios and their influencing factors are still unclear.Our objective is to investigate the potential differences between the Mg/Ca ratios of these different morphotypes of G.ruber(white)and T.sacculifer in the western Philippine Sea(WPS)and determine their implications for the reconstruction of SST and upper-ocean structure.Mg/Ca measurements are made on two basic morphotypes of G.ruber(white)[sensu stricto(s.s.)and sensu lato(s.l.)]and T.sacculifer[with(w)and without(w/o)a sac-like final chamber]on samples of Site MD06-3047B from the WPS.Our results reveal that Mg/Ca ratios of different G.ruber morphotypes show consistent differences;and those of T.sacculifer morphotypes show staged variations since MIS 3.It is suggested to select a single morphotype for reconstructing SST changes using the Mg/Ca ratios of G.ruber and T.sacculifer in the WPS.Furthermore,the Mg/Ca ratios between G.ruber s.s.and G.ruber s.l.[Δ(Mg/Ca)_(G.ruber s.s.-s.l.)]downcore MD06-3047B covaries with indexes of summer monsoon.Combining with the core-top results,showing regional variation of differences in theΔ(Mg/Ca)_(G.ruber s.s.-s.l.)over the western tropical Pacific,we propose thatΔ(Mg/Ca)_(G.ruber s.s.-s.l.)may tend to reflect summer mixed layer depth.
基金Sponsored by National Program for University Students’Innovation and Pioneering Training(201210285046)
文摘G.rigens L.as a new quality ground cover plant can be applied in parks,yards,roadsides and tree pools,and contributes to the beauty of urban landscapes.This paper introduces biological characters and adaptability of‘Mini Star White’,a new variety of G.rigens L.introduced from Japan,and studied the color improvement of the variety on the basis of applying it in various landscape forms,which enriches ground cover diversity of Suzhou area,and provides new materials for the hybridization of G.rigens L..
基金supported by the Knowledge Innovation Key Program of the Chinese Academy of Sciences under Grant No.KJCX2-YW-T24the Yunnan Natural Science Foundation(Y1YJ011001)
文摘Asteroseismology is a powerful tool used for detecting the inner structure of stars, which is also widely used to study white dwarfs. We discuss the asteroseismology of DAV stars. The period-to-period fitting method is discussed in detail, including its reliability in detecting the inner structure of DAV stars. If we assume that all observed modes of some DAV stars are the l = I cases, the errors associated with model fitting will be always large. If we assume that the observed modes are com- posed of I = 1 and 2 modes, the errors associated with model fitting in this case will be small. However, there will be modes identified as l = 2 that do not have ob- served quintuplets. G29-38 has been observed spectroscopically and photometrically for many years. Thompson et al. made 1 modes identifications in the star through the limb darkening effect. With 11 known I modes, we also study the asteroseismology of G29-38, which reduces the blind l fittings and is a fair choice. Unfortunately, our two best-fitting models are not in line with the previous atmospheric results. Based on factors like only a few observed modes, stability and identification of eigenmodes, identification of spherical degrees, construction of physical and realistic models and so on, detecting the inner structure of DAV stars by asteroseismology needs further development.