We study the multi-waveband non-thermal emission from the pulsar wind nebulae (PWNe) Vela X and G0.9+0.1 in the frame of a time-dependent model describing non-thermal radiation from the PWNe. In such a model, the r...We study the multi-waveband non-thermal emission from the pulsar wind nebulae (PWNe) Vela X and G0.9+0.1 in the frame of a time-dependent model describing non-thermal radiation from the PWNe. In such a model, the relativistic wind of particles driven by a central pulsar blows into the ambient medium and creates a termination shock that accelerates the particles to very high energy in a PWN. The non-thermal photons in the PWN are produced both by synchrotron radiation and the inverse Compton process, with electrons coming directly from the pulsar magnetosphere and electrons being accelerated at the termination shock. We apply this model to reproduce the observed multi-waveband photon spectra of Vela X and the G0.9+0.1, both of which have been detected emitting very high energy photons. Our results indicate that TeV photons are produced by the inverse Compton scattering of the high-energy electrons in the infrared photon field in both Vela X and PWN G0.9+0.1. The TeV photons from these two PWNe may have leptonic origins.展开更多
Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explo...Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833- 1034 and the BC 48 guest star are obtained. The initial period/90 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now.展开更多
基金Supported by the National Natural Science Foundation of China
文摘We study the multi-waveband non-thermal emission from the pulsar wind nebulae (PWNe) Vela X and G0.9+0.1 in the frame of a time-dependent model describing non-thermal radiation from the PWNe. In such a model, the relativistic wind of particles driven by a central pulsar blows into the ambient medium and creates a termination shock that accelerates the particles to very high energy in a PWN. The non-thermal photons in the PWN are produced both by synchrotron radiation and the inverse Compton process, with electrons coming directly from the pulsar magnetosphere and electrons being accelerated at the termination shock. We apply this model to reproduce the observed multi-waveband photon spectra of Vela X and the G0.9+0.1, both of which have been detected emitting very high energy photons. Our results indicate that TeV photons are produced by the inverse Compton scattering of the high-energy electrons in the infrared photon field in both Vela X and PWN G0.9+0.1. The TeV photons from these two PWNe may have leptonic origins.
基金Supported by the National Natural Science Foundation of China.
文摘Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833- 1034 and the BC 48 guest star are obtained. The initial period/90 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now.