Tetrahydroisoquinolines are known to have various biological effects, including antitumor activity. This study investigated the effect of 1-chloromethyl-6, 7-dimethoxy-3, 4-dihydro-1H-isoquinoline-2-sulfonic acid amid...Tetrahydroisoquinolines are known to have various biological effects, including antitumor activity. This study investigated the effect of 1-chloromethyl-6, 7-dimethoxy-3, 4-dihydro-1H-isoquinoline-2-sulfonic acid amide (CDST), a newly synthesized anticancer agent, on cellular differentiation and proliferation in HL-60 cells. Differentiation and proliferation of HL-60 cells were determined through expression of CD11b and CD14 surface antigens using flow cytometry and nitroblue tetrazolium (NBT) assay, and through analysis of cell cycle using propidium iodide staining, western blot analysis and immunoprecipitation, respectively. CDST induced the differentiation of HL-60, as shown by increased expression of differentiation surface antigen CD11b (but no significant change in CD14 expression) and increased NBT-reducing functional activity. DNA flow cytometry analysis indicated that CDST markedly induced a G0/G1 phase arrest of HL-60 cells. Subsequently, we examined the expre-ssion of G0/G1 phase cell cycle-related proteins, including cyclin-dependent kinases (CDKs), cyclins and cyclin dependent kinase inhibitors (CKIs), during the differentiation of HL-60. The levels of CDK2, CDK6, cyclin E and cyclin A were decreased, whereas steady-state levels of CDK4 and cyclin D1 were unaffected. The expression of the p27Kip1 was markedly increased by CDST, but not p21WAF1/Cip1. Moreover, CDST markedly enhanced the binding of p27Kip1 with CDK2 and CDK6, resulting in the reduced activity of both kinases. Taken together, these results demonstrate that CDST is capable of inducing cellular differentiation and growth inhibition through p27Kip1 protein-related G0/G1 phase arrest in HL-60 cells.展开更多
Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transfor...Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transformation.Herein,it is initially revealed that nanosize aminated fullerene(C_(70)-EDA)can activate autophagic flux,induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation,and significantly inhibit tumor growth in vivo.Mechanismly,C_(70)-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation,attributing to the interaction with a panel of RNA binding proteins.The accumulation of cathepsin D induces the autophagic degradation of cyclin D1,which arouses G0/G1 phase arrest.This work unveils the fantastic anti-tumor activity of aminated fullerene,elucidates the molecular mechanism,and provides a new strategy for the antineoplastic drug development on functional fullerenes.展开更多
Abstract Objective To examine UVB-induced responses in normal human keratinocytes (HaCaT) and epidermoid carcinoma cells (A431) at the cellular and molecular level, and investigated the protective effect of salidr...Abstract Objective To examine UVB-induced responses in normal human keratinocytes (HaCaT) and epidermoid carcinoma cells (A431) at the cellular and molecular level, and investigated the protective effect of salidroside. Methods Cells irradiated by UVB at various dosage and their viability was assessed by MTT assays, cell cycle was analysed by flow cytometry. The expression of NF-KB, BCL-2, and CDK6 after 50 J/㎡ UVB irradiation were detected by RT-PCR and western blotting. Results Our results confirmed greater tolerance of A341 cells to UVB-induced damage such as cell viability and cell cycle arrest, which was accompanied by differential expression changes in NF-KB, BCL-2, and CDK6. UVB exposure resulted in HaCaT cells undergoing G1-S phase arrest. When treated with salidroside, HaCaT survival was significantly enhanced following exposure to UVB, suggesting great therapeutic potential for this compound. Conclusion Taken together, our study suggests that A431 respond differently to UVB than norma HaCaT cells, and supports a role for NF-KB, CDK6, and BCL-2 in UVB-induced cell G1-S phase arrest Furthermore, salidroside can effectively protect HaCaT from UVB irradiation.展开更多
<p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this ...<p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this mini-review is to demonstrate special tetraploidy in the enabling process. This we have shown from genomic damage, DDR (DNA Damage Response) activity with skip of mitosis leading to diploid G2 cells at the G1 border in need of chromatin repair for continued cell cycling to the special tetraploid division system. In several studies</span><span> </span><span>specific methylation transferase genes were activated in normal human cells in tissue fields</span><span>, </span><span>containing different cell growth stages of the cancerous process. Histology studies, in addition to molecular chemistry for identification of oncogenic mutational change</span></span></span><span><span><span>,</span></span></span><span><span><span> w</span></span></span><span><span><span>ere</span></span></span><span><span><span style="font-family:;" "=""><span> a welcome change (see below). In a study on melanoma origin, DDR also showed arrested diploid cells regaining cycling from methylation transferase activity with causation of 2n melanocytes transforming to 4n melanoblasts, giving rise to epigenetic tumorigenesis enabled First Cells. Such First Cells were from Barrett’s esophagus shown to have inherited the unique division system from 4n diplochromosomal cells, first described in mouse ascites cancer cells (below). We discovered that the large nucleus prior to chromosomal division turned 90<span style="color:#4F4F4F;white-space:normal;background-color:#FFFFFF;">°</span> relative to the cytoskeleton axis, and divided genome reductive to diploid, First Cells, in a perpendicular </span><span>orientation to the surrounding normal cells they had originated from. This unique division system was herein shown to occur at metastasis stage, imply</span><span>ing activity throughout the cancerous evolution. Another study showed 4-chromatid tetraploidy in development to B-cell lymphoma, and that such cancer cells also proliferated with participation of this unusual division system. Such participation has long been known from Bloom’s inherited syndrome with repair chiasmas between the four chromatids, also an </span><i><span>in vitro</span></i><span> observation by us. Our cytogenetic approach also revealed that they believed mitotic division in cancer cells is wrong because such cell divisions were found to be from an adaptation between amitosis and mitosis, called amitotic</span></span></span></span><span><span><span>-</span></span></span><span><span><span style="font-family:;" "=""><span>mitosis. Amitosis means division without centrosomes, which has long been known from oral cancer cells, in that MOTCs (microtubule orga</span><span>nizing center) were lacking centrioles. This observation calls for re-introduction </span><span>of karyotype and cell division studies in cancer cell proliferation. It has high probability of contributing novel approaches to cancer control from screening of drugs against the amitotic-mitotic division apparatus.</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span> </p> <span></span><span></span> <p> <span></span> </p>展开更多
文摘Tetrahydroisoquinolines are known to have various biological effects, including antitumor activity. This study investigated the effect of 1-chloromethyl-6, 7-dimethoxy-3, 4-dihydro-1H-isoquinoline-2-sulfonic acid amide (CDST), a newly synthesized anticancer agent, on cellular differentiation and proliferation in HL-60 cells. Differentiation and proliferation of HL-60 cells were determined through expression of CD11b and CD14 surface antigens using flow cytometry and nitroblue tetrazolium (NBT) assay, and through analysis of cell cycle using propidium iodide staining, western blot analysis and immunoprecipitation, respectively. CDST induced the differentiation of HL-60, as shown by increased expression of differentiation surface antigen CD11b (but no significant change in CD14 expression) and increased NBT-reducing functional activity. DNA flow cytometry analysis indicated that CDST markedly induced a G0/G1 phase arrest of HL-60 cells. Subsequently, we examined the expre-ssion of G0/G1 phase cell cycle-related proteins, including cyclin-dependent kinases (CDKs), cyclins and cyclin dependent kinase inhibitors (CKIs), during the differentiation of HL-60. The levels of CDK2, CDK6, cyclin E and cyclin A were decreased, whereas steady-state levels of CDK4 and cyclin D1 were unaffected. The expression of the p27Kip1 was markedly increased by CDST, but not p21WAF1/Cip1. Moreover, CDST markedly enhanced the binding of p27Kip1 with CDK2 and CDK6, resulting in the reduced activity of both kinases. Taken together, these results demonstrate that CDST is capable of inducing cellular differentiation and growth inhibition through p27Kip1 protein-related G0/G1 phase arrest in HL-60 cells.
基金This work was supported by the National Natural Science Foundation of China(No.51802310)All animal experiments were conducted according to protocols approved by the Institutional Animal Care and Use Committee in the Institute of Chemistry,Chinese Academy of Sciences.
文摘Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transformation.Herein,it is initially revealed that nanosize aminated fullerene(C_(70)-EDA)can activate autophagic flux,induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation,and significantly inhibit tumor growth in vivo.Mechanismly,C_(70)-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation,attributing to the interaction with a panel of RNA binding proteins.The accumulation of cathepsin D induces the autophagic degradation of cyclin D1,which arouses G0/G1 phase arrest.This work unveils the fantastic anti-tumor activity of aminated fullerene,elucidates the molecular mechanism,and provides a new strategy for the antineoplastic drug development on functional fullerenes.
基金supported by the National Natural Science Foundation of China(30970673,81172634)Natural Science Foundation of Guangdong Province(9151022501000013,S2011040003686)+1 种基金Guangdong Province"211Project"(200826GW,201007GW)Grant from School of Public Health and Tropical Medicine of Southern Medical University,China(Grant No.GW201111)
文摘Abstract Objective To examine UVB-induced responses in normal human keratinocytes (HaCaT) and epidermoid carcinoma cells (A431) at the cellular and molecular level, and investigated the protective effect of salidroside. Methods Cells irradiated by UVB at various dosage and their viability was assessed by MTT assays, cell cycle was analysed by flow cytometry. The expression of NF-KB, BCL-2, and CDK6 after 50 J/㎡ UVB irradiation were detected by RT-PCR and western blotting. Results Our results confirmed greater tolerance of A341 cells to UVB-induced damage such as cell viability and cell cycle arrest, which was accompanied by differential expression changes in NF-KB, BCL-2, and CDK6. UVB exposure resulted in HaCaT cells undergoing G1-S phase arrest. When treated with salidroside, HaCaT survival was significantly enhanced following exposure to UVB, suggesting great therapeutic potential for this compound. Conclusion Taken together, our study suggests that A431 respond differently to UVB than norma HaCaT cells, and supports a role for NF-KB, CDK6, and BCL-2 in UVB-induced cell G1-S phase arrest Furthermore, salidroside can effectively protect HaCaT from UVB irradiation.
文摘<p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this mini-review is to demonstrate special tetraploidy in the enabling process. This we have shown from genomic damage, DDR (DNA Damage Response) activity with skip of mitosis leading to diploid G2 cells at the G1 border in need of chromatin repair for continued cell cycling to the special tetraploid division system. In several studies</span><span> </span><span>specific methylation transferase genes were activated in normal human cells in tissue fields</span><span>, </span><span>containing different cell growth stages of the cancerous process. Histology studies, in addition to molecular chemistry for identification of oncogenic mutational change</span></span></span><span><span><span>,</span></span></span><span><span><span> w</span></span></span><span><span><span>ere</span></span></span><span><span><span style="font-family:;" "=""><span> a welcome change (see below). In a study on melanoma origin, DDR also showed arrested diploid cells regaining cycling from methylation transferase activity with causation of 2n melanocytes transforming to 4n melanoblasts, giving rise to epigenetic tumorigenesis enabled First Cells. Such First Cells were from Barrett’s esophagus shown to have inherited the unique division system from 4n diplochromosomal cells, first described in mouse ascites cancer cells (below). We discovered that the large nucleus prior to chromosomal division turned 90<span style="color:#4F4F4F;white-space:normal;background-color:#FFFFFF;">°</span> relative to the cytoskeleton axis, and divided genome reductive to diploid, First Cells, in a perpendicular </span><span>orientation to the surrounding normal cells they had originated from. This unique division system was herein shown to occur at metastasis stage, imply</span><span>ing activity throughout the cancerous evolution. Another study showed 4-chromatid tetraploidy in development to B-cell lymphoma, and that such cancer cells also proliferated with participation of this unusual division system. Such participation has long been known from Bloom’s inherited syndrome with repair chiasmas between the four chromatids, also an </span><i><span>in vitro</span></i><span> observation by us. Our cytogenetic approach also revealed that they believed mitotic division in cancer cells is wrong because such cell divisions were found to be from an adaptation between amitosis and mitosis, called amitotic</span></span></span></span><span><span><span>-</span></span></span><span><span><span style="font-family:;" "=""><span>mitosis. Amitosis means division without centrosomes, which has long been known from oral cancer cells, in that MOTCs (microtubule orga</span><span>nizing center) were lacking centrioles. This observation calls for re-introduction </span><span>of karyotype and cell division studies in cancer cell proliferation. It has high probability of contributing novel approaches to cancer control from screening of drugs against the amitotic-mitotic division apparatus.</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span> </p> <span></span><span></span> <p> <span></span> </p>