期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SUMOylation-modified Pelota-Hbs1 RNA surveillance complex restricts the infection of potyvirids in plants 被引量:3
1
作者 Linhao Ge Buwei Cao +9 位作者 Rui Qiao Hongguang Cui Shaofang Li Hongying Shan Pan Gong Mingzhen Zhang Hao Li Aiming Wang Xueping Zhou Fangfang Li 《Molecular Plant》 SCIE CSCD 2023年第3期632-642,共11页
RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable ... RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable of restricting viruses in plants.Here,we show that the evolutionarily conserved Pelota–Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae(termed potyvirids),the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide.Pelota enables the recognition of the functional G1-2A6-7 motif in the P3 cistron,which is conserved in almost all potyvirids.This allows Pelota to target the virus and act as a viral restriction factor.Furthermore,Pelota interacts with the SUMO E2-conjugating enzyme SCE1 and is SUMOylated in planta.Blocking Pelota SUMOylation disrupts the ability to recruit Hbs1 and inhibits viral RNA degradation.These findings reveal the functional importance of Pelota SUMOylation during the infection of potyvirids in plants. 展开更多
关键词 SUMOYLATION Pelota-Hbs1 g1-2a6-7 motif POTYVIRUSES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部