期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles 被引量:8
1
作者 Mohammad Pourmahmood Aghababa Mohammad Hossein Amrollahi Mehdi Borjkhani 《Journal of Marine Science and Application》 2012年第3期378-386,共9页
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa... In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account. 展开更多
关键词 path planning autonomous underwater vehicle genetic algorithm ga particle swarmoptimization pso ant colony optimization (ACO) collision avoidance
下载PDF
质子交换膜燃料电池模型的频域分数阶子空间辨识 被引量:1
2
作者 叶伟琴 戚志东 +1 位作者 田家欣 孙成硕 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第7期1194-1202,共9页
针对质子交换膜燃料电池(PEMFC)系统发电过程中的分数阶特性,本文提出了一种频域分数阶子空间辨识方法建立PEMFC的分数阶状态空间(FOSS)模型.考虑到时域分数阶的微分形式计算复杂度较大,将时域中的分数阶微分在频域中转化为乘积的形式.... 针对质子交换膜燃料电池(PEMFC)系统发电过程中的分数阶特性,本文提出了一种频域分数阶子空间辨识方法建立PEMFC的分数阶状态空间(FOSS)模型.考虑到时域分数阶的微分形式计算复杂度较大,将时域中的分数阶微分在频域中转化为乘积的形式.首先,采用随机多频正弦激励信号对时域采集的信号进行处理,得到输入输出的频率响应数据;其次,利用频率响应数据构造实、虚部矩阵;接着,通过RQ分解、SVD分解以及最小二乘法求取系统系数矩阵A,B,C,D;由于参数同元分数阶次α、辅助阶次q以及频域采样点数M未知,本文提出了一种GA–PSO算法进行优化,将PSO算法作为主线,加入GA算法中的选择、交叉和变异操作,以进一步提高个体的自适应调整搜索方向、增强全局寻优的能力.仿真结果验证了算法的有效性,频域分数阶子空间辨识方法得到的输出能够较好的跟随实测数据,且优化后的辨识结果误差更小,精确度更高,能够更准确地描述PEMFC的电特性变化过程. 展开更多
关键词 质子交换膜燃料电池 频域分析 分数阶 子空间辨识 ga–pso算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部