The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines...The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%.展开更多
为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标...为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
文摘The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%.
文摘为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.