期刊文献+
共找到3,318篇文章
< 1 2 166 >
每页显示 20 50 100
Predictive modelling of volumetric and Marshall properties of asphalt mixtures modified with waste tire-derived char:A statistical neural network approach
1
作者 Nura Shehu Aliyu Yaro Muslich Hartadi Sutanto +4 位作者 Noor Zainab Habib Aliyu Usman Abiola Adebanjo Surajo Abubakar Wada Ahmad Hussaini Jagaba 《Journal of Road Engineering》 2024年第3期318-333,共16页
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw... The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices. 展开更多
关键词 Waste tire neural network Sustainable practices Asphalt mixtures predictive model
下载PDF
Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models
2
作者 Zhigao Chen Yan Zong +2 位作者 Zihao Wu Zhiyu Kuang Shengping Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期40-51,共12页
The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended inter... The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models. 展开更多
关键词 discharge prediction long short-term memory networks sequence-to-sequence(Seq2Seq)model tidal river back propagation neural network Changjiang River(Yangtze River)Estuary
下载PDF
Stock Price Prediction Based on the Bi-GRU-Attention Model
3
作者 Yaojun Zhang Gilbert M. Tumibay 《Journal of Computer and Communications》 2024年第4期72-85,共14页
The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest... The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest for further in-depth mining and research. Mathematical statistics methods struggle to deal with nonlinear relationships in practical applications, making it difficult to explore deep information about stocks. Meanwhile, machine learning methods, particularly neural network models and composite models, which have achieved outstanding results in other fields, are being applied to the stock market with significant results. However, researchers have found that these methods do not grasp the essential information of the data as well as expected. In response to these issues, researchers are exploring better neural network models and combining them with other methods to analyze stock data. Thus, this paper proposes the ABiGRU composite model, which combines the attention mechanism and bidirectional gated recurrent unit (GRU) that can effectively extract data features for stock price prediction research. Models such as LSTM, GRU, and Bi-LSTM are selected for comparative experiments. To ensure the credibility and representativeness of the research data, daily stock price indices of BYD are chosen for closing price prediction studies across different models. The results show that the ABiGRU model has a lower prediction error and better fitting effect on three index-based stock prices, enhancing the learning efficiency of the neural network model and demonstrating good prediction stability. This suggests that the ABiGRU model is highly adaptable for stock price prediction. 展开更多
关键词 Machine Learning Attention Mechanism LSTM neural network ABiGRU model Stock Price prediction
下载PDF
Prediction of NO_(x)concentration using modular long short-term memory neural network for municipal solid waste incineration 被引量:2
4
作者 Haoshan Duan Xi Meng +1 位作者 Jian Tang Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期46-57,共12页
Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emis... Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network. 展开更多
关键词 Municipal solid waste incineration NO_(x)concentration prediction Modular neural network model
下载PDF
Prediction of column failure modes based on artificial neural network 被引量:1
5
作者 Wan Haitao Qi Yongle +2 位作者 Zhao Tiejun Ren Wenjuan Fu Xiaoyan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期481-493,共13页
To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Eart... To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Earthquake Engineering Research Center(PEER).The main factors affecting failure modes of columns include the hoop ratios,longitudinal reinforcement ratios,ratios of transverse reinforcement spacing to section depth,aspect ratios,axial compression ratios,and flexure-shear ratios.This study proposes a data-driven prediction model based on an artificial neural network(ANN)to identify the column failure modes.In this study,111 groups of data are used,out of which 89 are used as training data and 22 are used as test data,and the ANN prediction model of failure modes is developed.The results show that the proposed method based on ANN is superior to traditional methods in identifying the column failure modes. 展开更多
关键词 performance-based seismic design failure mode COLUMN artificial neural network prediction model
下载PDF
Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield 被引量:3
6
作者 Gniewko Niedba?a 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第1期54-61,共8页
The aim of the research was to create a prediction model for winter rapeseed yield.The constructed model enabled to perform simulation on 30 June,in the current year,immediately before harvesting.An artificial neural ... The aim of the research was to create a prediction model for winter rapeseed yield.The constructed model enabled to perform simulation on 30 June,in the current year,immediately before harvesting.An artificial neural network with multilayer perceptron(MLP) topology was used to build the predictive model.The model was created on the basis of meteorological data(air temperature and atmospheric precipitation) and mineral fertilization data.The data were collected in the period 2008–2017 from 291 productive fields located in Poland,in the southern part of the Opole region.The assessment of the forecast quality created on the basis of the neural model has been verified by defining forecast errors using relative approximation error(RAE),root mean square error(RMS),mean absolute error(MAE),and mean absolute percentage error(MAPE) metrics.An important feature of the created predictive model is the ability to forecast the current agrotechnical year based on current weather and fertilizing data.The lowest value of the MAPE error was obtained for a neural network model based on the MLP network of 21:21-13-6-1:1 structure,which was 9.43%.The performed sensitivity analysis of the network examined the factors that have the greatest impact on the yield of winter rape.The highest rank 1 was obtained by an independent variable with the average air temperature from 1 January to 15 April of 2017(designation by the T1-4_CY model). 展开更多
关键词 FORECAST MLP network neural model prediction ERROR sensitivity analysis YIELD simulation
下载PDF
Monthly Mean Temperature Prediction Based on a Multi-level Mapping Model of Neural Network BP Type 被引量:1
7
作者 严绍瑾 彭永清 郭光 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第2期225-232,共8页
In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level... In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%. 展开更多
关键词 neural network BP-type multilevel mapping model Monthly mean temperature prediction
下载PDF
Neural Network Modeling and Prediction of Surface Roughness in Machining Aluminum Alloys 被引量:1
8
作者 N. Fang N. Fang +1 位作者 P. Srinivasa Pai N. Edwards 《Journal of Computer and Communications》 2016年第5期1-9,共9页
Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling a... Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling and prediction of surface roughness in machining aluminum alloys using data collected from both force and vibration sensors. Two neural network models, including a Multi-Layer Perceptron (MLP) model and a Radial Basis Function (RBF) model, were developed in the present study. Each model includes eight inputs and five outputs. The eight inputs include the cutting speed, the ratio of the feed rate to the tool-edge radius, cutting forces in three directions, and cutting vibrations in three directions. The five outputs are five surface roughness parameters. Described in detail is how training and test data were generated from real-world machining experiments that covered a wide range of cutting conditions. The results show that the MLP model provides significantly higher accuracy of prediction for surface roughness than does the RBF model. 展开更多
关键词 Artificial neural network modelING prediction Surface Roughness MACHINING Aluminum Alloys
下载PDF
Neural network-based model for prediction of permanent deformation of unbound granular materials
9
作者 Ali Alnedawi Riyadh Al-Ameri Kali Prasad Nepal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1231-1242,共12页
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,... Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method. 展开更多
关键词 Flexible PAVEMENT design Unbound GRANULAR materials PERMANENT deformation (PD) Repeated load TRIAXIAL test (RLTT) prediction models Artificial neural network (ANN)
下载PDF
Prediction Model of Sewing Technical Condition by Grey Neural Network
10
作者 董英 方方 张渭源 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期565-568,共4页
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was es... The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics’ mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch. 展开更多
关键词 grey relevant degree neural network NEEDLE STITCH KES measurement prediction model
下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
11
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network
12
作者 WANG Zhi-liang,FU Qiang,LIANG Chuan (Hydroelectric College,Sichuan University) 《Journal of Northeast Agricultural University(English Edition)》 CAS 2001年第1期37-42,共6页
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal... On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible. 展开更多
关键词 SOIL prediction model of Soil Nutrients Loss Based on Artificial neural network
下载PDF
Structure analysis of shale and prediction of shear wave velocity based on petrophysical model and neural network
13
作者 ZHU Hai XU Cong +1 位作者 LI Peng LIU Cai 《Global Geology》 2020年第3期155-165,共11页
Accurate shear wave velocity is very important for seismic inversion.However,few researches in the shear wave velocity in organic shale have been carried out so far.In order to analyze the structure of organic shale a... Accurate shear wave velocity is very important for seismic inversion.However,few researches in the shear wave velocity in organic shale have been carried out so far.In order to analyze the structure of organic shale and predict the shear wave velocity,the authors propose two methods based on petrophysical model and BP neural network respectively,to calculate shear wave velocity.For the method based on petrophysics model,the authors discuss the pore structure and the space taken by kerogen to construct a petrophysical model of the shale,and establish the quantitative relationship between the P-wave and S-wave velocities of shale and physical parameters such as pore aspect ratio,porosity and density.The best estimation of pore aspect ratio can be obtained by minimizing the error between the predictions and the actual measurements of the P-wave velocity.The optimal porosity aspect ratio and the shear wave velocity are predicted.For the BP neural network method that applying BP neural network to the shear wave prediction,the relationship between the physical properties of the shale and the elastic parameters is obtained by training the BP neural network,and the P-wave and S-wave velocities are predicted from the reservoir parameters based on the trained relationship.The above two methods were tested by using actual logging data of the shale reservoirs in the Jiaoshiba area of Sichuan Province.The predicted shear wave velocities of the two methods match well with the actual shear wave velocities,indicating that these two methods are effective in predicting shear wave velocity. 展开更多
关键词 SHALE rock-physics model BP neural network prediction of shear wave velocity
下载PDF
Prediction of SO_2 Concentration in Urban Atmosphere Based on B-P Neural Network 被引量:1
14
作者 姚建 王丽梅 袁野 《Meteorological and Environmental Research》 CAS 2010年第11期9-11,14,共4页
Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as t... Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as to forecast atmospheric SO2 concentration in a city of southwest China.The results showed that B-P neural network applied in the prediction of SO2 concentration in urban atmosphere was reasonable and efficient with high accuracy and wide adaptability,so it was worthy to be popularized. 展开更多
关键词 B-P neural network SO2 concentration in urban atmospheric prediction model China
下载PDF
A Short-Term Traffic Flow Prediction ModelBased on Quantum Genetic Algorithm andFuzzy RBF Neural Networks
15
作者 Kun Zhang 《计算机科学与技术汇刊(中英文版)》 2016年第1期24-39,共16页
关键词 神经网络 流动模拟 基因算法 RBF 交通 预言 短期 ARIMA
下载PDF
SIMULATING RHYTHMIC MOVEMENT OF HUMAN ELBOW JOINT USING A NEURAL NETWORK PREDICTIVE MODEL
16
作者 李醒飞 张国雄 肖少君 《Transactions of Tianjin University》 EI CAS 2001年第1期40-43,共4页
Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated ... Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated in three cases:1)Parameters of the MLP,the limb geometry and dynamic model match completely,2)Parameters mismatch between them,and 3)Disturbance exists.The results show that parameters mismatch is the main error source,which causes the elbow joint movement to be aberrant.From this we can infer that movement study is a process in which the internal model is updated continuously to match the geometry and dynamic model of limb. 展开更多
关键词 MPC neural network predictive model rhythmic movement control
下载PDF
Software Defect Prediction Using Hybrid Machine Learning Techniques: A Comparative Study
17
作者 Hemant Kumar Vipin Saxena 《Journal of Software Engineering and Applications》 2024年第4期155-171,共17页
When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect pr... When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect prediction is elaborated through an innovative hybrid machine learning framework. The proposed technique combines an advanced deep neural network architecture with ensemble models such as Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The study evaluates the performance by considering multiple software projects like CM1, JM1, KC1, and PC1 using datasets from the PROMISE Software Engineering Repository. The three hybrid models that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, GaussianNB, Support Vector Classification (SVC), Neural Network), and the Hybrid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC AUC, and precision. The presented work offers valuable insights into the effectiveness of hybrid techniques for cross-project defect prediction, providing a comparative perspective on early defect identification and mitigation strategies. . 展开更多
关键词 Defect prediction Hybrid Techniques Ensemble models Machine Learning neural network
下载PDF
Predicting the growth performance of growing-finishing pigs based on net energy and digestible lysine intake using multiple regression and artificial neural networks models 被引量:8
18
作者 Li Wang Qile Hu +3 位作者 Lu Wang Huangwei Shi Changhua Lai Shuai Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2022年第6期1932-1944,共13页
Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used ... Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future. 展开更多
关键词 Multiple regression model neural networks PIG prediction
下载PDF
Neural-Network-Based Nonlinear Model Predictive Tracking Control of a Pneumatic Muscle Actuator-Driven Exoskeleton 被引量:9
19
作者 Yu Cao Jian Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第6期1478-1488,共11页
Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplis... Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplish rehabilitation tasks.However,because PMAs have nonlinearities,hysteresis,and uncertainties,etc.,complex mechanisms are rarely involved in the study of PMA-driven robotic systems.In this paper,we use nonlinear model predictive control(NMPC)and an extension of the echo state network called an echo state Gaussian process(ESGP)to design a tracking controller for a PMA-driven lower limb exoskeleton.The dynamics of the system include the PMA actuation and mechanism of the leg orthoses;thus,the system is represented by two nonlinear uncertain subsystems.To facilitate the design of the controller,joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP.A gradient descent algorithm is employed to solve the optimization problem and generate the control signal.The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics.Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects. 展开更多
关键词 Echo state Gaussian process model predictive control neural network pneumatic muscle actuators-driven exoskeleton
下载PDF
Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt 被引量:5
20
作者 Ahmed Mohamed Semeida 《Journal of Modern Transportation》 2014年第1期20-29,共10页
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ... Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable. 展开更多
关键词 Artificial neural networks Horizontal curve Multi-lane highways Operating speed prediction models Regression models Roadway factors
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部