针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控...针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控制输入及输出变量,以平抑净负荷波动及减少储能充放电频次为目的,将微电网控制经验总结成模糊规则表,采用神经网络深度学习算法修正模糊控制模型的隶属度函数中心、宽度和输出权重来提高模型的自适应能力,从而制定了可调控负荷和储能的功率控制系数;进而针对模糊神经网络控制输出的负荷调控需求量在各可调控负荷间分配的问题,提出了基于灵活性供给指标排序的负荷调控优先级选择方法,最终完成了微电网系统储能单元和可调控负荷控制策略的制定。某典型微电网系统算例仿真结果表明,所提方法制定的各可调控负荷与储能控制策略能在避免储能频繁和过度充放电的同时,在并网状态下有效减弱并网功率对上级电网造成的随机扰动,在孤岛状态下能够有效平抑系统功率波动,提升系统运行稳定性。展开更多
为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标...为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。展开更多
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络...提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。展开更多
文摘针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控制输入及输出变量,以平抑净负荷波动及减少储能充放电频次为目的,将微电网控制经验总结成模糊规则表,采用神经网络深度学习算法修正模糊控制模型的隶属度函数中心、宽度和输出权重来提高模型的自适应能力,从而制定了可调控负荷和储能的功率控制系数;进而针对模糊神经网络控制输出的负荷调控需求量在各可调控负荷间分配的问题,提出了基于灵活性供给指标排序的负荷调控优先级选择方法,最终完成了微电网系统储能单元和可调控负荷控制策略的制定。某典型微电网系统算例仿真结果表明,所提方法制定的各可调控负荷与储能控制策略能在避免储能频繁和过度充放电的同时,在并网状态下有效减弱并网功率对上级电网造成的随机扰动,在孤岛状态下能够有效平抑系统功率波动,提升系统运行稳定性。
文摘为提高硬脆材料微结构的加工效率和精度,需要预测微磨具的不确定性磨损。基于微磨具在位视觉磨损检测和聚类分析,提出基于遗传算法的反向神经网络(genetic algorithm back propagation,GA-BP)模型。选取微磨具磨头截面面积损失量为指标,以表征微磨具不确定性磨损特征。利用K-均值聚类算法划分微磨具磨损状态阶段。最后构建以主轴转速、进给率、微槽深度、磨削长度和微磨具初始截面面积为输入层神经元,以磨头截面面积损失量预测值为输出层的GA-BP神经网络模型。设计不同工艺参数条件下的单晶硅微槽微细磨削实验,基于自搭建的机器视觉系统在位测量微磨具的磨头截面面积磨损量。将实验测得的微磨具磨损量作为训练数据,与传统高斯过程回归预测模型对比,验证GA-BP神经网络模型的有效性和准确性。结果表明,GA-BP神经网络模型能够实现不同工艺参数和不同磨削长度下的微磨具磨损预测,比传统高斯过程回归预测模型具有更高预测精度,平均误差精度达到5%,可以实现微磨具磨损阶段状态预测。
文摘提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。